
- •Министерство образования и науки
- •Содержание
- •Предисловие
- •Программа курса “Механика”
- •Место дисциплины в учебном процессе и виды учебной работы
- •Распределение учебных часов
- •Учебно-тематический план
- •Содержание курса
- •Примерная тематика семинарских занятий
- •Вычислительный эксперимент
- •Средства обеспечения дисциплины
- •Рекомендуемая литература
- •Лекция №1. Введение
- •1. Предмет физики, её связь с другими естественными науками
- •2. Методы физических исследований
- •3. Роль модельных представлений в физике
- •4. Физические величины, их измерение и оценка точности и достоверности полученных результатов
- •5. Системы единиц физических величин
- •Контрольные вопросы
- •Лекция №2. Кинематика материальной точки при прямолинейном движении
- •1. Кинематические законы движения материальной точки
- •Зависимость (2.3)
- •2. Скорость и ускорение при прямолинейном движении
- •Контрольные вопросы
- •Лекция №3. Кинематика материальной точки при криволинейном движении
- •1. Скорость материальной точки при криволинейном движении
- •2. Ускорение материальной точки при криволинейном движении
- •3.Ускорение при движении материальной точки по окружности
- •4. Кинематика вращательного движения материальной точки
- •Контрольные вопросы
- •Лекция №4. Динамика материальной точки
- •1. Первый закон Ньютона
- •2. Масса
- •3. Сила
- •4. Второй закон Ньютона
- •5. Третий закон Ньютона
- •6. Импульс. Общая формулировка второго закона Ньютона
- •7. Виды взаимодействий тел
- •8. Гравитационные силы (силы тяготения)
- •9. Сила тяжести и вес. Невесомость
- •10. Силы трения
- •Контрольные вопросы
- •Лекция №5. Динамика системы материальных точек
- •1. Центр масс системы материальных точек
- •2. Закон сохранения импульса
- •Движение каждой точки описывается вторым законом Ньютона:
- •3. Движение тел с переменной массой. Реактивное движение
- •4. Задача двух тел. Приведенная масса
- •Контрольные вопросы
- •Лекция №6. Законы сохранения
- •1. Работа
- •2. Энергия и работа
- •3. Кинетическая энергия и работа
- •4. Потенциальная энергия
- •5. Закон сохранения и превращения механической энергии
- •6. Соударение двух тел
- •7. Момент силы относительно неподвижного центра
- •8. Момент импульса относительно неподвижного центра
- •9. Закон сохранения момента импульса
- •10. Законы сохранения и симметрия пространства и времени
- •Контрольные вопросы
- •Лекция №7. Механика твердого тела
- •1. Понятие об абсолютно твердом теле
- •2. Твердое тело как система материальных точек
- •3. Поступательное движение твердого тела
- •4. Вращательное движение твердого тела
- •5. Плоское движение твердого тела
- •6. Момент силы относительно оси
- •7. Момент пары сил
- •8. Второй закон Ньютона для вращающегося твердого тела
- •9. Момент инерции твердого тела
- •10. Теорема Штейнера
- •11. Закон сохранения момента импульса при вращательном движении
- •12. Кинетическая энергия вращающегося тела
- •13. Кинетическая энергия тела при плоском движении
- •14. Свободные оси вращения
- •15. Гироскоп
- •16. Степени свободы и связи абсолютно твердого тела
- •17. Условия равновесия твердого тела. Виды равновесия
- •18. Центр тяжести
- •Контрольные вопросы
- •Лекция №8. Механика деформируемых тел
- •1. Упругие силы
- •2. Виды упругих деформаций
- •3. Упругие и пластические деформации. Предел упругости и предел прочности
- •4. Всестороннее растяжение и сжатие
- •5. Энергия упругой деформации
- •Потенциальная энергия упруго деформированного стержня равна
- •6. Кручение
- •Контрольные вопросы
- •Лекция №9. Механика жидкостей и газов
- •1. Механические свойства жидкостей и газов
- •2. Гидростатика
- •Кажущийся вес тела
- •3.Гидродинамика
- •4. Описание движения жидкостей. Уравнение неразрывности струи
- •5. Уравнение Бернулли
- •6. Вязкость
- •7. Ламинарное и турбулентное течения
- •8. Течение вязкой жидкости в круглой трубе. Формула Пуазейля
- •9. Движение тел в жидкостях и газах. Закон Стокса
- •10. Истечение жидкости из отверстия
- •Контрольные вопросы
- •Лекция №10. Движение в неинерциальных системах отсчета
- •1. Неинерциальные системы отсчета
- •2. Силы инерции
- •3. Силы инерции при ускоренном поступательном движении системы отсчета
- •123 4. Силы инерции при равномерном вращательном движении системы отсчета. Центробежная сила инерции
- •5. Сила Кориолиса
- •Контрольные вопросы
- •Лекция №11. Механические колебания и волны
- •1. Гармонические колебания и их характеристики
- •2. Динамика колебательного движения
- •3. Гармонический осциллятор. Пружинный, физический и математический маятники
- •4. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения
- •5. Сложение взаимно перпендикулярных колебаний
- •6. Свободные затухающие колебания
- •7. Вынужденные колебания
- •8. Амплитуда и фаза вынужденных колебаний. Резонанс
- •9. Автоколебания
- •10.Распространение колебаний в однородной упругой среде
- •11. Уравнение плоской и сферической бегущей волны. Фазовая скорость. Волновое уравнение
- •12. Принцип суперпозиции. Групповая скорость
- •13.Энергия упругой волны
- •14. Интерференция волн
- •15. Стоячие волны
- •16. Характеристика звуковых волн
- •17. Эффект Доплера в акустике
- •18. Ультразвук и eго применение
- •Контрольные вопросы
- •Лекция №12. Всемирное тяготение
- •1. Законы Кеплера и закон всемирного тяготения
- •2. Гравитационная масса
- •3. Поле тяготения и его напряженность
- •4. Работа в поле тяготения. Потенциал поля тяготения
- •5. Космические скорости
- •6. Принцип эквивалентности гравитационных сил и сил инерции
- •Контрольные вопросы
- •Лекция № 13. Элементы специальной теории относительности
- •1. Преобразования Галилея. Механический принцип относительности
- •2. Постулаты специальной (частной) теории относительности
- •3. Преобразования Лоренца
- •4. Следствия из преобразований Лоренца
- •5. Интервал между событиями
- •6. Основной закон релятивистской динамики материальной точки
- •7. Взаимосвязь массы и энергии
- •Контрольные вопросы
- •Фатыхов Миннехан Абузарович Механика
Примерная тематика семинарских занятий
Кинематика прямолинейного движения.
Кинематика криволинейного движения и вращение тела вокруг неподвижной оси.
Динамика материальной точки и тела, движущегося поступательно.
Динамика криволинейного движения материальной точки.
Динамика вращательного движения твердого тела.
Статика. Упругие деформации твердого тела.
Гравитационное взаимодействие. Движение тел в поле тяготения.
Работа и энергия. Потенциальная энергия упруго деформированного тела.
Законы сохранения в механике. Закон сохранения импульса, энергии и момента импульса.
Механические колебания.
Волны в упругой среде.
Механика жидкостей и газов.
Релятивистская механика.
Вычислительный эксперимент
Движение по окружности.
Вес и невесомость.
Движение по наклонной плоскости.
Реактивное движение.
Законы Кеплера.
Течение идеальной жидкости.
Свободные колебания груза на пружине.
Вынужденные колебания.
Законы сохранения. Моделирование движения в гравитационном поле.
Расчет моментов инерции твердых тел.
Классический гармонический осциллятор.
Моделирование движения маятника с колеблющейся точкой подвеса.
Цепочка связанных осцилляторов. Продольные и поперечные волны.
Средства обеспечения дисциплины
В качестве средств обеспечения дисциплины предполагается использование лаборатории механики, лаборатории лекционных демонстраций и класс вычислительной физики с программным обеспечением.
Рекомендуемая литература
Основная литература:
Сивухин Д.В. Курс общей физики. Т.1. Механика. – М.: Наука, 1979.
Лаврова И.В. Курс физики. – М.: Просвещение, 1981.
Грабовский Р.И. Курс физики. – М.: Высшая школа, 1980.
Архангельский М.М. Курс физики. Механика. – М.: Просвещение, 1975.
Александров Н.В., Яшкин А.Я. Курс общей физики. Механика. – М.: Просвещение, 1978.
Савельев И.В. Курс общей физики. Т.1. – М.: Высшая школа, 1989; или Кн.1. – М.: Высшая школа, 1998.
Задачники:
Волькенштейн В.С. Сборник задач по общему курсу. – М.: Наука, 1979 (другие годы издания).
Иродов И.Е.Задачник по общей физике. – М.: Наука, 1988.
Чертов А.Г., Воробьев А.А. Задачник по физике. – М.: Высшая школа, 1988.
Дополнительная литература:
Гулд Х., Тобочник Я. Компьютерное моделирование в физике. Т.1-2. – М.: Мир, 1990.
Детлаф А.А., Яворский Б.М. Курс физики. – М.: Высшая школа, 1989.
Хайкин С.Э. Физические основы механики. – М.: Наука, 1979.
Матвеев А.Н. Механика и теория относительности. – М.: Высшая школа, 1986.
Гершензон Е.М., Малов Н.Н., Мансуров А.Н. Курс общей физики. Механика. – М.: Академия, 2001.
Лекция №1. Введение
1. Предмет физики, её связь с другими естественными науками
Физика – наука, изучающая наиболее общие свойства материи и формы её движения.Под материей подразумевается весь окружающий нас мир, включающий два известных нам вида материи –вещество(в твердом, жидком, газообразном состоянии и плазме) иполе(гравитационное, электромагнитное, поле ядерных сил), которые способны видоизменяться и превращаться друг в друга и описываются законами физики.
Неотъемлемым всеобщим свойством материи является движение, понимаемое в самом широком смысле, т.е. не только как механическое перемещение тел в пространстве, но и как изменение и развитие как таковое. Известны следующие виды физических форм движения: механические, атомно-молекулярные, гравитационные, электромагнитные, внутриатомные и внутриядерные процессы. Они являются общими потому, что содержатся во всех более сложных формах движения материи, изучаемых другими науками. Например, процессы жизнедеятельности организмов, изучаемых биологией, всегда сопровождаются механическими, электрическими, внутриатомными и другими физическими процессами. Таким образом, предмет исследований физики составляют общие закономерности явлений природы.
Физика – одна из основных общих естественных наук, в которых изучаются законы неживой природы. Связь физики с другими естественными науками выражается прежде всего в том, что, выявляя общие закономерности явлений природы, её макро- и микромира, физикафундаментальна по отношению к ним. Физика позволяет создавать приборы и вырабатывать методы исследования, необходимые для развития других наук. Например, в развитии биологии большое значение имели микроскоп, в астрономии – телескоп, в химии – спектральный анализ и др. Все естественные науки широко и плодотворно применяют метод меченых атомов, электронную аппаратуру и другие физические приборы, а также различные методы физических исследований. Справедлива, конечно, и обратная связь: развитие других естественных наук ставит перед физикой новые задачи и способствует её прогрессу и совершенствованию. Только на стыке физики и биологии возникли ряд новых смежных научных направлений, таких как биофизика, биомеханика – наука, изучающая законы движения биологических систем, биоэнергетика – наука, занимающаяся вопросами механизма генерации и переноса энергии в живых объектах, радиобиология – наука, изучающая действие внешних физических полей и излучений на живые организмы, современная генетика, рассматривающая явления наследственности на молекулярном уровне. В последние годы особенно пристальное внимание уделяется изучению биоэлектрических явлений, обусловливающих возникновение биоэлектрических потенциалов, а также агрофизике – науке о влиянии водовоздушных, тепловых и световых режимов на развитие растений и животных и возможности их регулирования и создания фитотронов (станций искусственного климата). Возникли другие смежные науки, такие как астрофизика, физическая химия, электрофизика и др.
Развитие математики и физики также очень тесно связано друг с другом. Без знания математики нельзя изучать физику, так как все закономерности в физике выражаются посредством чисел. Только с помощью математического аппарата можно разобраться и проанализировать сложные закономерности, которые имеют место в физических явлениях. Разработка математических методов всегда преследует, в том или ином виде, цель практическую – дать средство анализа закономерностей природы. Поэтому изучение физики тесно связано с изучением математики даже в той части физики, которую называют общей и экспериментальной, так как здесь исследователь определяет количественные изменения различных величин.