
- •Министерство образования и науки
- •Содержание
- •Предисловие
- •Программа курса “Механика”
- •Место дисциплины в учебном процессе и виды учебной работы
- •Распределение учебных часов
- •Учебно-тематический план
- •Содержание курса
- •Примерная тематика семинарских занятий
- •Вычислительный эксперимент
- •Средства обеспечения дисциплины
- •Рекомендуемая литература
- •Лекция №1. Введение
- •1. Предмет физики, её связь с другими естественными науками
- •2. Методы физических исследований
- •3. Роль модельных представлений в физике
- •4. Физические величины, их измерение и оценка точности и достоверности полученных результатов
- •5. Системы единиц физических величин
- •Контрольные вопросы
- •Лекция №2. Кинематика материальной точки при прямолинейном движении
- •1. Кинематические законы движения материальной точки
- •Зависимость (2.3)
- •2. Скорость и ускорение при прямолинейном движении
- •Контрольные вопросы
- •Лекция №3. Кинематика материальной точки при криволинейном движении
- •1. Скорость материальной точки при криволинейном движении
- •2. Ускорение материальной точки при криволинейном движении
- •3.Ускорение при движении материальной точки по окружности
- •4. Кинематика вращательного движения материальной точки
- •Контрольные вопросы
- •Лекция №4. Динамика материальной точки
- •1. Первый закон Ньютона
- •2. Масса
- •3. Сила
- •4. Второй закон Ньютона
- •5. Третий закон Ньютона
- •6. Импульс. Общая формулировка второго закона Ньютона
- •7. Виды взаимодействий тел
- •8. Гравитационные силы (силы тяготения)
- •9. Сила тяжести и вес. Невесомость
- •10. Силы трения
- •Контрольные вопросы
- •Лекция №5. Динамика системы материальных точек
- •1. Центр масс системы материальных точек
- •2. Закон сохранения импульса
- •Движение каждой точки описывается вторым законом Ньютона:
- •3. Движение тел с переменной массой. Реактивное движение
- •4. Задача двух тел. Приведенная масса
- •Контрольные вопросы
- •Лекция №6. Законы сохранения
- •1. Работа
- •2. Энергия и работа
- •3. Кинетическая энергия и работа
- •4. Потенциальная энергия
- •5. Закон сохранения и превращения механической энергии
- •6. Соударение двух тел
- •7. Момент силы относительно неподвижного центра
- •8. Момент импульса относительно неподвижного центра
- •9. Закон сохранения момента импульса
- •10. Законы сохранения и симметрия пространства и времени
- •Контрольные вопросы
- •Лекция №7. Механика твердого тела
- •1. Понятие об абсолютно твердом теле
- •2. Твердое тело как система материальных точек
- •3. Поступательное движение твердого тела
- •4. Вращательное движение твердого тела
- •5. Плоское движение твердого тела
- •6. Момент силы относительно оси
- •7. Момент пары сил
- •8. Второй закон Ньютона для вращающегося твердого тела
- •9. Момент инерции твердого тела
- •10. Теорема Штейнера
- •11. Закон сохранения момента импульса при вращательном движении
- •12. Кинетическая энергия вращающегося тела
- •13. Кинетическая энергия тела при плоском движении
- •14. Свободные оси вращения
- •15. Гироскоп
- •16. Степени свободы и связи абсолютно твердого тела
- •17. Условия равновесия твердого тела. Виды равновесия
- •18. Центр тяжести
- •Контрольные вопросы
- •Лекция №8. Механика деформируемых тел
- •1. Упругие силы
- •2. Виды упругих деформаций
- •3. Упругие и пластические деформации. Предел упругости и предел прочности
- •4. Всестороннее растяжение и сжатие
- •5. Энергия упругой деформации
- •Потенциальная энергия упруго деформированного стержня равна
- •6. Кручение
- •Контрольные вопросы
- •Лекция №9. Механика жидкостей и газов
- •1. Механические свойства жидкостей и газов
- •2. Гидростатика
- •Кажущийся вес тела
- •3.Гидродинамика
- •4. Описание движения жидкостей. Уравнение неразрывности струи
- •5. Уравнение Бернулли
- •6. Вязкость
- •7. Ламинарное и турбулентное течения
- •8. Течение вязкой жидкости в круглой трубе. Формула Пуазейля
- •9. Движение тел в жидкостях и газах. Закон Стокса
- •10. Истечение жидкости из отверстия
- •Контрольные вопросы
- •Лекция №10. Движение в неинерциальных системах отсчета
- •1. Неинерциальные системы отсчета
- •2. Силы инерции
- •3. Силы инерции при ускоренном поступательном движении системы отсчета
- •123 4. Силы инерции при равномерном вращательном движении системы отсчета. Центробежная сила инерции
- •5. Сила Кориолиса
- •Контрольные вопросы
- •Лекция №11. Механические колебания и волны
- •1. Гармонические колебания и их характеристики
- •2. Динамика колебательного движения
- •3. Гармонический осциллятор. Пружинный, физический и математический маятники
- •4. Сложение гармонических колебаний одного направления и одинаковой частоты. Биения
- •5. Сложение взаимно перпендикулярных колебаний
- •6. Свободные затухающие колебания
- •7. Вынужденные колебания
- •8. Амплитуда и фаза вынужденных колебаний. Резонанс
- •9. Автоколебания
- •10.Распространение колебаний в однородной упругой среде
- •11. Уравнение плоской и сферической бегущей волны. Фазовая скорость. Волновое уравнение
- •12. Принцип суперпозиции. Групповая скорость
- •13.Энергия упругой волны
- •14. Интерференция волн
- •15. Стоячие волны
- •16. Характеристика звуковых волн
- •17. Эффект Доплера в акустике
- •18. Ультразвук и eго применение
- •Контрольные вопросы
- •Лекция №12. Всемирное тяготение
- •1. Законы Кеплера и закон всемирного тяготения
- •2. Гравитационная масса
- •3. Поле тяготения и его напряженность
- •4. Работа в поле тяготения. Потенциал поля тяготения
- •5. Космические скорости
- •6. Принцип эквивалентности гравитационных сил и сил инерции
- •Контрольные вопросы
- •Лекция № 13. Элементы специальной теории относительности
- •1. Преобразования Галилея. Механический принцип относительности
- •2. Постулаты специальной (частной) теории относительности
- •3. Преобразования Лоренца
- •4. Следствия из преобразований Лоренца
- •5. Интервал между событиями
- •6. Основной закон релятивистской динамики материальной точки
- •7. Взаимосвязь массы и энергии
- •Контрольные вопросы
- •Фатыхов Миннехан Абузарович Механика
3. Движение тел с переменной массой. Реактивное движение
Выведем уравнение движения материальной точки с переменной массой на примере движения ракеты. Принцип действия ракеты заключается в следующем. Ракета с большой скоростью выбрасывает вещество (газы), воздействуя на него с огромной силой. Выбрасываемое вещество той же силой, но противоположно направленной, в свою очередь действует на ракету и сообщает ей ускорение в противоположном направлении. Если нет внешних сил, то ракета вместе с выброшенным веществом является замкнутой системой. Импульс такой системы не может меняться во времени.
Пусть
– масса ракеты в произвольный момент
времени
,
а
– ее скорость в тот же момент. Количество
движения ракеты в этот момент времени
будет
.
Спустя время
масса и скорость ракеты получат
приращения. Заметим, что величина
отрицательна. Количество движения
ракеты станет равным
.
Обозначим
через
массу газов, образовавшихся за время
,
а через
– их скорость. Тогда количество движения
газов, образовавшихся за время
равно
.
Из современной формулировки второго
закона Ньютона имеем, что
,
где
– геометрическая сумма всех внешних
сил, действующих на ракету.
Таким образом,
(5.19)
Раскрывая
скобки и учитывая, что
и
–
малые величины за время
,
можно отбросить произведение
как бесконечно малую высшего порядка.
Обозначим через
скорость истечения газов относительно
ракеты, которую называютскоростью
газовой струи ракеты. Кроме
того, из закона сохранения массы следует,
что
.
С учетом этих замечаний выражение (5.19) преобразуется к виду
.
(5.20)
Разделим
это выражение на
и из (5.20) получим
(5.21)
По
форме уравнение (5.21) совпадает с
уравнением, выражающим второй закон
Ньютона. Однако масса тела
здесь не постоянна, а меняется во времени
из-за потери вещества. Кроме того, в
правой части выражение
имеет смысл дополнительной внешней
силы. Она называется реактивной
силой и имеет
значение силы, с которой действуют на
ракету вытекающие из нее газы. Уравнение
(5.21) впервые было получено русским
механиком И.В.Мещерским и называется
уравнением
Мещерского или уравнением движения
точки с переменной массой.
Применим
уравнение
(5.21) к движению
ракеты, на которую не действуют никакие
внешние силы. Полагая
,
получим
(5.22)
Предположим,
что ракета движется прямолинейно в
направлении, противоположном скорости
газовой струи
.
За положительное направление примем
направление полета. Тогда в скалярной
форме уравнение (5.22) примет вид
.
Следовательно,
(5.23)
Скорость газовой струи может меняться во время полета. Однако для простоты мы примем, что она постоянна. В этом случае
Значение
постоянной интегрирования
С определяется
начальными условиями. Допустим, что в
начальный момент времени скорость
ракеты равна нулю, а ее масса равна
.
Тогда предыдущее уравнение дает
откуда
Следовательно,
(5.24)
или
(5.25)
Формула (5.25) называется формулой Циолковского.
Формула Циолковского позволяет рассчитать запас топлива, необходимый для сообщения ракете определенной скорости. Она показывает, что:
чем больше конечная масса ракеты, тем больше должна быть ее стартовая скорость;
чем больше скорость истечения газов, тем больше может быть конечная масса при данной стартовой массе ракеты.
Уравнение
Мещерского и формула Циолковского
получены для нерелятивистских движений,
т.е. для случаев, когда скорости
и
малы по сравнению со скоростью света.