
- •Isbn 5-98227-075-худк 551(07) ббк 26.3я7
- •Глава 1
- •1.1. Образование вселенной
- •1Спгги (ту)
- •1.2. Солнечная система
- •1.2.1. Солнце и его параметры
- •1.2.2. Строение Солнечной системы
- •1.2.3. Внутренние планеты
- •1.2.4. Внешние планеты
- •1.2.5. Астероиды, кометы и метеориты
- •1.2.6.Происхождение Солнечной системы
- •1.2.7. Строение Луны
- •Глава 2 строение и состав земли
- •2.1.Форма земли
- •2.2. Внутреннее строение земли
- •Глава 3
- •3 Японское море Японскиеострова в
- •Часть II
- •Глава 4 атмосфера и гидросфера
- •Глава 5
- •Глава 6
- •Глава 7
- •Глава 8
- •Глава 9
- •Глава 10
- •Глава 11
- •Глава 12
- •12.5. Оледенения в истории земли
- •12.6. Причины возникновения оледенений
- •Глава 13
- •13.1. Распространение криолитозоны
- •13.2. Происхождение криолитозоны
- •13.3. Строение криолитозоны
- •13.4. Типы подземных льдов
- •13.5. Подземные воды в криолитозоне
- •13.6. Криогенные формы рельефа
- •13.7. Термокарст
- •13.8. Криогенные формы рельефа, связанные с гравитационными процессами
- •13.9. Хозяйственная деятельность в криолитозоне
- •Глава 14
- •14.1. Свойства океанской воды
- •14.2. Динамический режим мирового океана
- •14.3. Рельеф океанского дна
- •14.4. Геологическая деятельность волн
- •14.5. Эвстатические колебания уровня океана
- •14.6. Осадконакопление в океанах
- •Рудная сульфидная постройка (
- •14.7. Ресурсы дна океанов
- •14.8. Стадии преобразования осадков, осадочные горные породы и взаимоотношение слоистых толщ
- •Часть III
- •Глава 15 магматизм
- •15.1. Понятие о магме
- •15.2. Интрузивный магматизм
- •Зависимость состава вулканических газов от температуры
- •15.5. Вулканические постройки
- •15.6. Типы вулканических извержений
- •15.7. Поствулканические явления
- •15.8. Геологическая позиция действующих вулканов и понятие о магматических очагах
- •Глава 16 метаморфические процессы
- •16.1. Фации метаморфизма
- •IТемпература, с Рис. 16.1.Основные фации метаморфизма
- •100 200 300 400 500600 700 800 900 1000 Температура, °с
- •16.2. Параметры и типы метаморфизма
- •16.3. Ударный метаморфизм
- •Тектонические движения и деформации горных пород
- •17.1. Вертикальные и горизонтальные движения
- •17.2. Понятие о деформациях горных пород
- •Г рафик скоростей и превышений по линии Зеленчук — Сухуми
- •График скоростей ипревышений по лвнин Зеленчук — Сухуми (сопоставлены результаты измерений 1959 г. И 1975 г.)
- •График скоростей и превышений «о линии Зелеячук - Сухуми (сопоставлены результаты измерения 1975 г. И 1990г.)
- •Глава 18 землетрясения
- •Пробега j 5 с момента землетрясения, мин.
- •Часть IV
- •Глава 19
- •Глава 20
- •Глава 21 достижения и проблемы
- •3 И 1 ij 1 u ! и 1 qtMtCkTtntUu гяяии» »tMia,nw
- •Глава 1
- •Глава 2
- •Глава 3
- •Глава 11
- •Глава 12
- •Глава 13
- •Глава 14
- •Глава 15-16
- •Глава 17
- •Глава 18
- •Допущено Министерством образования и науки рф в качестве учебника для студентов высших учебных заведений, обучающихся по специальности «Геология»
1.2.6.Происхождение Солнечной системы
Образование Солнца и планет является одним из фундаментальных вопросов естествознания. Джордано Бруно в XVI в. первым высказал мысль о том, что многие звезды, как и Солнце, окружены планетами и эти системы то возникают, то умирают. Только в XVIII в. благодаря трудам выдающихся ученых И. Канта и П. Лапласа сформировалась наука о происхождении всех небесных тел — космогония.Они показали, что т. к. движение всех планет подчинено одному закону, то и образование их должно также происходить по единому закону. Именно они высказали идею газопылевой туманности, первоначально вращавшейся вокруг Солнца, из которой впоследствии и сформировались планеты. С тех пор планетная космогония ушла далеко вперед, и современные представления о формировании Солнечной системы выглядят следующим образом (рис. 1.15).
ш
-' 1 Li-I' *' V.
cJJT
.. . .
Рис. 1.15. Формирование Солнечной системы. 1 — взрыв сверхновой звезды порождает ударные волны, воздействующие на газопылевое облако (ГПО);
— ГПО начинает фрагментироваться и сплющиваться, закручиваясь при этом;
— первичная солнечная небула; 4 — образование Солнца и гигантских, богатых газом планет — Юпитера и Сатурна; 5 — сильный ионизированный газ — солнечный
ветер — сдувает газ из внутренней зоны системы и с мелких планетезималей; 6 — образование внутренних планет из планетезималей в течение 100 млн лет и формирование облаков Оорта, состоящих из камней
допланетные планетезимали, попавшие туда благодаря гравитационным возмущениям со стороны планет-гигантов. Образование планетезималей заняло не более 1 млн лет, т. е. произошло по космическим меркам почти мгновенно.
Важнейшим этапом была аккреция собственно планет из роя планетезималей, занявшая уже гораздо больше времени, около 1000 млн лет. Современное численное моделирование позволяет рассчитывать скорости допланетных тел и распределение их масс. Эти тела двигались по круговым орбитам, сталкиваясь друг с другом, разрушаясь, выбрасывая газ и пыль, но если тело было крупное, оно не разваливалось от ударов, а, наоборот, присоединяло к себе другие частицы и планетезимали. Чем больше было тело, тем оно быстрее росло и вступало в гравитационное взаимодействие с другими телами, изменяя их орбиты. Именно в этих наиболее крупных телах и сосредоточивалась основная масса вещества допланетного диска, образуя зародыши планет. Одно из основных условий роста тел — это низкая скорость их столкновения, не превышающая 1 м/сек. Образование группы внутренних планет происходило за счет соударений каменных планетезималей в отсутствие легких газов, которые удалялись солнечным ветром. Но планеты-гиганты, вернее, их силикатные ядра становились уже в 2-3 раза тяжелее Земли и сумели удержать водородно-гелиевую газовую оболочку. Когда Юпитер на стадии быстрой аккреции достиг внушительных размеров — примерно в 50 раз больше Земли, он присоединил к себе весь газ из окружающего пространства, и далее аккреция пошла уже намного медленнее.
Сатурн, который расположен дальше от Солнца, рос медленнее. По составу он отличается от Солнца сильнее, чем Юпитер. Точно так же, двухступенчато, росли и остальные планеты-гиганты. Сначала формировались ядра, а затем происходила аккреция газов. Огромное количество энергии, высвобождавшееся при аккреции, нагревало внешние газовые оболочки планет-гигантов до нескольких тысяч градусов. Любопытно, что когда формировались спутники Юпитера, то ближе к нему расположенные, особенно Ио и в меньшей степени Европа, состояли из каменного вещества, т. к. температура на этих орбитах была выше температуры конденсации водяного пара. Дальние спутники — Ганимед и Каллисто — в большей своей части состоят уже из льда воды, т. к. температура была низкой, поэтому в составе далеких спутников планет-гигантов, да и самих наиболее удаленных планет, распространены конденсаты метана, этана, аммиака и воды.
Спутники планет образуются по той же принципиальной схеме, что и сами планеты. Во время аккреции планеты часть планетезималей захватывается силой ее гравитации на околопланетную орбиту. Так у пла- петы формируется доспутниковый диск, из которого путем аккреции образуются спутники.
Для геологов, конечно, первостепенным является вопрос формирования Земли и планет земной группы. Мы знаем, что в настоящее время Земля состоит из ряда сферических оболочек, в том числе твердого внутреннего ядра, жидкого внешнего ядра и твердой мантии с тонкой оболочкой — твердой же земной коры. Иными словами, Земля дифференцирована по свойствам и составу вещества. Когда и как произошла эта дифференциация?
На этот счет существуют две наиболее распространенные точки зрения. Ранняя из них полагает, что первоначальная Земля, сформировавшаяся сразу после аккреции из планетезималей, состоящих из никелистого железа и силикатов, была однородна и только потом подверглась дифференциации на железоникелевое ядро и силикатную мантию. Эта гипотеза получила название гомогенной аккреции.
Более поздняя гипотеза гетерогенной аккрециизаключается в том, что сначала аккумулировались наиболее тугоплавкие планетезимали, состоящие из железа и никеля, и только потом в аккрецию вступило силикатное вещество, слагающее сейчас мантию Земли от уровня 2900 км, т. е. аккретировались уже «готовые» силикатные фазы и металлы, как полагает А. А. Ярошевский. Эта точка зрения сейчас, пожалуй, наиболее популярна, хотя и здесь возникает вопрос о выделении внешнего ядра, имеющего свойства жидкости. Возникло ли оно после формирования твердого внутреннего ядра, или внешнее и внутреннее ядра выделялись в процессе дифференциации? На этот вопрос однозначного ответа не существует, но предпочтение отдается второму варианту. Процесс аккреции — столкновение планетезималей размером до 1000 км — сопровождался большим выделением энергии с сильным прогревом формирующейся планеты, ее дегазацией, т. е. выделением летучих компонентов, содержащихся в падавших планетезималях. Большая часть летучих при этом безвозвратно терялась в межпланетном пространстве, о чем свидетельствует сравнение составов летучих компонентов в метеоритах и породах Земли. Процесс становления нашей планеты, по современным данным, длился около 500 млн лет и проходил в три фазы аккреции. В течение первой и главной фазы Земля сформировалась по радиусу на 93-95 %, и эта фаза закончилась к рубежу 4,4-4,5 млрд лет, т. е. длилась около 100 млн лет. Вторая фаза, ознаменовавшаяся завершением роста, длилась тоже около 200 млн лет. Наконец, третья фаза продолжительностью до 400 млн лет (3,8-3,9 млрд лет окончание) сопровождалась мощнейшей метеоритной бомбардировкой, такой же, как и на Луне.
Какой была первичная, только что родившаяся Земля? Была она горячей или холодной? Для геологов решение этого вопроса имеет принципиальное значение. Даже в начале XX в. ученые говорили о первичной «огненно-жидкой» Земле. Однако этот взгляд полностью противоречил современной геологической жизни планеты. Если бы Земля изначально была расплавленной, она давно бы превратилась в мертвую планету. Следовательно, предпочтение нужно отдать юной, не очень холодной, но и не расплавленной ранней Земле.
Факторов нагрева планеты было много. Это и гравитационная энергия; и соударение планетезималей; и падение очень крупных метеоритов, при ударе которых повышенная температура распространялась до глубин 1-2 тыс. км. Если же все-таки температура превышала точку плавления вещества, то наступала дифференциация — более тяжелые элементы, например железо, никель, опускались, а легкие, наоборот, всплывали. Но главный вклад в увеличение тепла должен был играть распад радиоактивных элементов — плутония, тория, калия, алюминия, йода. Еще один источник тепла — это твердые приливы, связанные с близким расположением спутника Земли — Луны. Все эти факторы, действуя вместе, могли повысить температуру до точки плавления пород, например в мантии она могла достигнуть +1500 °С. Но давление на больших глубинах препятствовало плавлению, особенно во внутреннем ядре. Процесс внутренней дифференциации нашей планеты происходил всю ее геологическую историю, продолжается он и сейчас. Однако уже 3,5-3,7 млрд лет назад, при возрасте Земли 4,6 млрд лет, у Земли были твердое внутреннее ядро, жидкое внешнее ядро и твердая мантия, т. е. она уже была дифференцирована в современном виде. Об этом говорит намагниченность древних горных пород, а, как известно, магнитное поле обусловлено взаимодействием жидкого внешнего ядра и твердой мантии.
Процесс расслоения, дифференциации недр происходил па всех планетах, но на Земле он происходит и в наше время, обеспечивая существование жидкого внешнего ядра и конвекцию в мантии. Атмосфера и гидросфера Земли возникли в результате конденсации газов, выделявшихся на ранней стадии развития планеты.