
- •Isbn 5-98227-075-худк 551(07) ббк 26.3я7
- •Глава 1
- •1.1. Образование вселенной
- •1Спгги (ту)
- •1.2. Солнечная система
- •1.2.1. Солнце и его параметры
- •1.2.2. Строение Солнечной системы
- •1.2.3. Внутренние планеты
- •1.2.4. Внешние планеты
- •1.2.5. Астероиды, кометы и метеориты
- •1.2.6.Происхождение Солнечной системы
- •1.2.7. Строение Луны
- •Глава 2 строение и состав земли
- •2.1.Форма земли
- •2.2. Внутреннее строение земли
- •Глава 3
- •3 Японское море Японскиеострова в
- •Часть II
- •Глава 4 атмосфера и гидросфера
- •Глава 5
- •Глава 6
- •Глава 7
- •Глава 8
- •Глава 9
- •Глава 10
- •Глава 11
- •Глава 12
- •12.5. Оледенения в истории земли
- •12.6. Причины возникновения оледенений
- •Глава 13
- •13.1. Распространение криолитозоны
- •13.2. Происхождение криолитозоны
- •13.3. Строение криолитозоны
- •13.4. Типы подземных льдов
- •13.5. Подземные воды в криолитозоне
- •13.6. Криогенные формы рельефа
- •13.7. Термокарст
- •13.8. Криогенные формы рельефа, связанные с гравитационными процессами
- •13.9. Хозяйственная деятельность в криолитозоне
- •Глава 14
- •14.1. Свойства океанской воды
- •14.2. Динамический режим мирового океана
- •14.3. Рельеф океанского дна
- •14.4. Геологическая деятельность волн
- •14.5. Эвстатические колебания уровня океана
- •14.6. Осадконакопление в океанах
- •Рудная сульфидная постройка (
- •14.7. Ресурсы дна океанов
- •14.8. Стадии преобразования осадков, осадочные горные породы и взаимоотношение слоистых толщ
- •Часть III
- •Глава 15 магматизм
- •15.1. Понятие о магме
- •15.2. Интрузивный магматизм
- •Зависимость состава вулканических газов от температуры
- •15.5. Вулканические постройки
- •15.6. Типы вулканических извержений
- •15.7. Поствулканические явления
- •15.8. Геологическая позиция действующих вулканов и понятие о магматических очагах
- •Глава 16 метаморфические процессы
- •16.1. Фации метаморфизма
- •IТемпература, с Рис. 16.1.Основные фации метаморфизма
- •100 200 300 400 500600 700 800 900 1000 Температура, °с
- •16.2. Параметры и типы метаморфизма
- •16.3. Ударный метаморфизм
- •Тектонические движения и деформации горных пород
- •17.1. Вертикальные и горизонтальные движения
- •17.2. Понятие о деформациях горных пород
- •Г рафик скоростей и превышений по линии Зеленчук — Сухуми
- •График скоростей ипревышений по лвнин Зеленчук — Сухуми (сопоставлены результаты измерений 1959 г. И 1975 г.)
- •График скоростей и превышений «о линии Зелеячук - Сухуми (сопоставлены результаты измерения 1975 г. И 1990г.)
- •Глава 18 землетрясения
- •Пробега j 5 с момента землетрясения, мин.
- •Часть IV
- •Глава 19
- •Глава 20
- •Глава 21 достижения и проблемы
- •3 И 1 ij 1 u ! и 1 qtMtCkTtntUu гяяии» »tMia,nw
- •Глава 1
- •Глава 2
- •Глава 3
- •Глава 11
- •Глава 12
- •Глава 13
- •Глава 14
- •Глава 15-16
- •Глава 17
- •Глава 18
- •Допущено Министерством образования и науки рф в качестве учебника для студентов высших учебных заведений, обучающихся по специальности «Геология»
Глава 5
ВЫВЕТРИВАНИЕ
Большинство геологических процессов на поверхности Земли обусловлены действием солнечной энергии и силы тяжести. Такие процессы называются экзогенными. Все горные породы под воздействием целого ряда факторов постепенно разрушаются — выветриваются. Образовавшиеся мелкие обломки — дресва, песок, глина — смываются дождем, водными потоками, т. е. перемещаются. Этот процесс называется денудацией. В дальнейшем весь рыхлый материал где-то накапливается — происходит его аккумуляция. Процесс разрушения первоначально монолитных горных пород — выветривание — является очень важным в ряду выветривания, денудации и аккумуляции. Приходя в контакт с атмосферой, гидросферой и биосферой, горные породы, ранее находившиеся на глубине, подвергаются изменению своего состояния, нарушению сплошности и, наконец, дезинтеграции, разрушению на мелкие частицы.
Какие же процессы приводят к выветриванию горных пород? Прежде всего это физическое, механическое разрушение, а также химическое и биохимическое разложение минералов и горных пород. Воздействие этих факторов усиливается тем, что как в магматических, так и в осадочных породах всегда присутствуют первичные трещины или трещины отдельности, возникшие при сокращении объема породы, после ее остывания или образования. Следовательно, увеличивается площадь соприкосновения породы с воздухом и водой, в трещины легко проникают корни растений (рис. 5.1). Механическое разрушение породы связано как с особенностями состава и строения самой породы, так и с внешними воздействиями. Первичные трещины в породах по мере эрозии залегающих выше толщ высвобождают усилия давления и расширяются, разрушая материнские породы (рис. 7-9 на цветной вклейке).
Однако наиболее существенным физическим фактором, вызывающим дезинтеграцию пород, являются температурные колебания, как суточные, так и сезонные. Темная поверхность горной породы летом может нагреваться до +60 "С, а в пустынях и выше. В то же время внутренняя часть породы гораздо холоднее. Ночью температура падает, а днем снова возрастает. Так происходит температурное «раскачивание» не только разных частей породы, но и ее минеральных составляю-
□ □□□ □ □□□ □ □□□ □ □□□
*—
1м -0,5м-
Рис.
5.1. Увеличение поверхности выветривания
породы по мере ее растрескивания
щих, особенно в полиминеральных породах, таких как граниты, гнейсы, лавы с крупными кристалликами-вкрапленниками. Разные минералы обладают различными коэффициентами объемного расширения, причем даже в одном минерале этот коэффициент меняется в зависимости от направления. Расширяясь и сжимаясь в разной степени, минералы провоцируют микронапряжения в горной породе, которые расшатывают ее «скелет», и она рассыпается на мелкие обломки — дресву.
Когда поверхность горных пород в каком-либо обнажении нагревается сильнее внутренних частей и, соответственно расширяется больше, то наблюдается отслаивание, шелушение породы параллельно поверхности обнажения. Такой процесс называется десквамацией.
5.1. МЕХАНИЧЕСКОЕ, ХИМИЧЕСКОЕ И БИОЛОГИЧЕСКОЕ ВЫВЕТРИВАНИЕ
1м
I
/ //
Рис. 5.2. Морозное выветривание. 1 — дождь заполняет водой трещины в горной породе; 2 — при замерзании воды лед (черное) увеличивается в объеме на 10 % и распирает породу, отдельные куски которой отваливаются от общей массы
Рис.
5.3. Идеализированная схема формирования
концентрическо-скорлуповатой отдельности
при выветривании по трещинам
Рис.
5.4. Матрацевидная форма выветривания
в палеозойских гранитах.
Центральный
Казахстан
Очевидно, что температурное выветривание шире всего проявляется в условиях жаркого климата, особенно в пустынях, где перепады дневных и ночных температур достигают 50 "С. Морозное выветривание свойственно полярным и субполярным областям, а также высокогорьям, для которых характерны развалы обломков горных пород.
Химическим выветриванием называется разрушение горных пород под воздействием воды, кислорода, углекислоты и органических кислот, содержащихся в воздухе и воде и воздействующих на поверхность пород, растворяя их (рис. 5.5).
Химические выветривание представлено несколькими основными процессами: растворением, окислением, гидратацией, восстановлением, карбонатизацией, гидролизом.
ю-
Растворение играет наиболее важную роль, т. к. связано с воздействием воды, в которой растворены ионы Na+, К+, Mgi+, Са2+, CI SO2-, НС03~ и др. Особенно существенны ионы водорода (Н+), гидро- ксильный ион (ОН ) и содержание 02, С02 и органических кислот. Как известно, концентрации ионов Н+ оценивают в виде рН-логарифма концентрации ионов. При рН = 6 растворимость железа в 100 тыс. раз (!) больше, чем при рН = 8,5. Глинозем — А1203, практически нерастворимый при рН от 5 до 9, при рН < 4 прекрасно растворяется. Кремнезем — SiO,2 — значительно увеличивает свою растворимость при переходе от кислых растворов с рН < 7 к щелочным рН > 7. Отсюда ясно, какую важную роль играет водородный ион в ускорении процессов химического выветривания, в частности растворения.
Хорошо
растворяются соли хлористо-водородной
и соляной кислот. Так, на 100 частей воды
по весу NaCl
приходится
36 частей, RC1
—
32, MgCl
—
56, CaCl
—
67. Карбонаты и сульфаты растворяются
хуже, например на 10 тыс. частей воды
всего 20 частей CaSO,
или
25 частей CaSO,
•
А л
•
2Н20.
Еще хуже растворяются карбонатные
породы, известняки, мергели, доломиты.
Однако если растворение продолжается
длительное время, то возникает большое
разнообразие
карстовых форм
рельефа, включая глубокие,
многокилометровые пещеры (см. гл. 8).
13
2
Рис.
5.5. Схема взаимодействия воды с
поверхностью минерала. Молекулы воды
способны отрывать ионы от минерала. 1
— минерал; 2 — раствор; 3 — поверхность
минерала; 4 — катион; 5 — анион; 6 —
молекула воды
©4
Qs
|)б
вода. Сильнее всего окисляются закисные соединения железа, марганца, никеля, серы, ванадия и других элементов, которые легко соединяются с кислородом. Легко окисляется такой распространенный минерал, как пирит:
FeS2 + n02 + mH20 -> FeS04 ->■ Fe2 (SO„) -> Fe203 • nll20.
Таким образом, на «выходе» после окисления получается такой распространенный минерал, как лимонит, или бурый железняк. На многих месторождениях сульфидных руд встречается «шляпа», или «покрышка», из бурого железняка — результат одновременных окисления и гидратации. Для нижних частей почвы характерны отрзанды, корки лимонита, цементирующего песка.
Следы окисления в виде пород, окрашенных в бурый, охристый цвет, наблюдаются везде, где в породах содержатся железистые минералы или их включения. Во влажном и жарком климате при испарении воды образуются бедные водой минералы группы гематита Fe203, обладающие красной окраской. Вот почему в тропических областях коры выветривания превращаются в твердую красную породу — латерит.
Восстановление происходит в отсутствие химически связанного кислорода, когда сильным восстановителем является органическое вещество, сформировавшееся в результате отмирания болотной растительности. При этом необходимы анаэробные условия в неподвижной, застойной воде, например в болотах. Восстановительные процессы превращают породы с оксидом железа, окрашенные в бурые, желтые и красноватые цвета, в серые и зеленые. Под торфом иногда возникает серо-зеленая глинистая масса, называемая глеем.
Гидролиз — это довольно сложный процесс, особенно затрагивающий минералы из группы силикатов и алюмосиликатов. Происходит он при взаимодействии ионов Н+ и ОН~ с ионами минералов, следовательно, для гидролиза всегда необходима вода. Гидролиз приводит к нарушению первичной кристаллической структуры минерала и возникновению новой структуры уже другого минерала. Наиболее распространенный пример — это гидролиз ортоклаза, одного из полевых шпатов, часто встречающегося в горных породах, особенно в гранитах. Гидролиз в присутствии С02 приводит к образованию нерастворимого минерала каолинита и выносу бикарбоната калия и кремнезема:
K2Al2Si6O10 + 2Н20 + С02 -> H2Al2Si2018 ■ Н20 + К2С03 + 4SiOr Ортоклаз Каолинит
Каолиновая глина, покрывая панцирем выветривающуюся породу, препятствует ее дальнейшему разрушению. Будучи довольно устойчивым минералом, каолинит при определенных условиях способен к дальнейшему разложению с образованием еще более устойчивых минералов, например гиббсита — АЮ(ОН)3, входящего в состав боксита, основной руды для получения алюминия.
Карбонатизация представляет собой реакцию ионов карбоната и бикарбоната с минералами, которая ведет к образованию карбонатов кальция, железа, магния и др. Большая часть известных нам карбонатов хорошо растворяется в воде и выносится из зоны выветривания. Именно поэтому грунтовые воды в таких местах обладают высокой жесткостью.
Гидратация — это процесс присоединения воды к минералам и образования новых минералов. Самый простой пример — переход ангидрита в гипс:
CaS04 + 2 Н20 « CaSO^ • 2НгО или гематита в гидроокислы железа:
Fe203
+
nH20
<=>
Fe203
•
nH20.
Объем породы при гидратации увеличивается, что может привести к деформациям отложений.
Биологическое выветривание. Живое вещество, с точки зрения В. И. Вернадского, создает химические соединения, которые могут производить большую геологическую работу.
Горные породы на своих поверхностях содержат огромное количество микроорганизмов. На 1 г выветрелой породы может приходиться до 1 млн бактерий. Как только порода начинает выветриваться, на ней сразу же поселяются бактерии и сине-зеленые водоросли, затем лишайники и мхи, которые растворяют и разрушают поверхностный слой породы, и после их отмирания на ней образуются углубления, ямки, борозды, заполненные сухой биомассой отмерших организмов. Изучение под микроскопом поверхности камней, слагающих древние храмы, дворцы, церкви, жилые здания и т. п., показывает, что на них находится множество разнообразных организмов — бактерии (цианобактерии, актиномицесты), водоросли, грибы, протисты, членистоногие, лишайники и др. Наиболее распространены грибные гифы (ветвящиеся тяжи) и микроколонии из округлых клеток. Грибы, как правило, интенсивно окрашены различными пигментами — меланином, каротиноидами, мик- роспоринами, которые вызывают потемнение трещин и придают поверхности мрамора, например, красновато-бурый, бурый — почти черный — цвет. Еле заметные трещинки на поверхности камней обладают другими экологическими обстановками, нежели обстановки на гладкой поверхности породы. Там больше влаги и меньше света. Поэтому в субаэральных пленках на поверхности камней преобладают микроскопические грибы, гифы которых активно растут, удлиняются и в конце концов покрывают всю поверхность камня.
Таким образом, на поверхности горных пород формируются сообщества микроорганизмов, играющие важную роль в процессах выветривания.
Биота,
поселившаяся на поверхности горных
пород, извлекает из нее необходимые для
жизни химические элементы — Р, S,
К,
Са, Mg,
Na,
В,
Sr,
Fe,
Si,
Al
и
др., что подтверждается их большим
содержанием в золе растений, выросших
на горных породах. Даже Si
извлекается
из кристаллических решеток
алюмосиликатов. Следовательно, организмы
участвуют в разложении минералов. Однако
они и возврашают новые химические
элементы в геологическую среду. Тем
самым происходит круговорот веществ,
обусловленный активностью биоты.
Следует
отметить, что в процессах химического
выветривания организмы участвуют и
косвенным путем, выделяя, например,
кислород при фотосинтезе, образуя С02
при отмирании растений, провоцируя
образование весьма агрессивных
органических кислот, которые резко
усиливают растворение и гидролиз
минералов. Такое воздействие наиболее
интенсивно происходит во влажном
тропическом климате, в густых болотистых
лесах, в которых опад (отмершие растения,
листья и др.) составляет почти 260 ц/га.
Вода в подобных джунглях обладает кислой
реакцией и активно растворяет горные
породы, нарушая связи в кристаллической
решетке минералов.
5.2. ПРОЦЕССЫ ГИПЕРГЕНЕВА И КОРЫ ВЫВЕТРИВАНИЯ
Под зоной гипергенеза понимается поверхностная часть земной коры, непрерывно подвергаемая воздействию различных экзогенных факторов и в которой горные породы стремятся войти в равновесие с непрерывно изменяющейся окружающей геологической средой. Термин «гинергенез», введенный А. Е. Ферсманом, знаменитым российским минералогом, по существу является синонимом термину «выветривание». Гипергенные процессы проникают далеко вглубь поверхностной части земной коры и видоизменяют ее в сильно расчлененном горном рельефе на сотни метров и даже несколько километров.
Типы гипергенеза, установленные Б. М. Михайловым, включают в себя следующие обстановки. Поверхностный (континентальный) гипер- генез происходит па поверхности суши и проникает вглубь с помощью нисходящей воды. К наиболее важным образованиям поверхностного гипергенеза относятся следующие:
Элювий, или кора выветривания, представляет собой геологическое тело, развитое на определенной площади или вдоль какой-либо зоны в горных породах, сложенное продуктами переработки поверхностных горных пород процессами физического, химического и биохимического выветривания. Элювий не перемещается, он остается на месте разрушенных пород. Естественно, что процессы формирования элювия развиваются на слабо расчлененном, выровненном рельефе, достигшем стадии зрелости. Именно в таких условиях и формируются коры выветривания, представляя собой остаточные продукты разрушения пород. Кора выветривания, как и ее мощность, зависит от ряда факторов. Наиболее благоприятные условия создаются при высокой температуре, высокой влажности и выровненном рельефе. В таких условиях жаркого гумидного климата образуются латеритные красные коры выветривания, состоящие из минералов гидрооксидов и оксидов алюминия, железа и титана с примесью каолинита (рис. 5.6). В связи с тем что верхняя часть коры выветривания обладает наибольшей степенью разложения первичного материала, в ней присутствуют глинозем (А1203) и гидроокислы железа, которые придают элювию в сухом состоянии высокую прочность, напоминая красный кирпич. Эта твердая самая верхняя часть латеритной коры выветривания называется панцирем, или кирасой. Нижняя часть латеритной коры выветривания имеет неровную границу с глубокими карманами над более раздробленными участками пород, где залегает дресва — мелкие обломки этих же коренных горных пород.
В областях с гумидным климатом распространен глинистый элювий — слой или толща глин, в которых сохраняется реликтовая структура коренных пород.
Над рудными залежами сульфидных руд иногда образуются рудные «шляпы», специфические коры выветривания, прочные корки из разложившихся сульфидных минералов.
Иллювий, или инфильтрационная кора выветривания, — еще один из типов гипергенеза, в котором вещество, замещающее коренные породы, привнесено извне. Иллювиальные коры выветривания имеют различный состав и мощность в зависимости от химического состава инфильтрующего раствора, физико-химических и климатических об- становок. Встречаются сульфатные, карбонатные, кремнистые и соляные (солончаки и солонцы) иллювиальные коры выветривания.
Выделяется также подводный гипергенез, или гальмиролиз. Этот процесс связан с воздействием морской воды на отложения океанского или морского дна. Магматические породы в этом случае разлагаются с образованием глин, а вулканические пеплы превращаются в особую глинистую массу.
Рис.
5.6. Кора выветривания в тропической
лесной зоне (по Н. М. Страхову).
1
— граниты, 2 — слабо измененная химически
зона дресвы, 3 — гидрослюдисто-
монморилонитово-бейделитовая зона, 4
— коалинитовая зона, 5 — охры А1203,
6
— панцирь Fe20.+
А1,03
Современные коры выветривания обладают небольшой мощностью и они, как правило, еще не сформировались, т. к. времени было недостаточно. В далекие геологические времена, когда большие пространства континентов обладали слабо расчлененным, выровненным рельефом, в условиях благоприятного климата формировались мощные, до 100 м и более, коры выветривания, обладающие характерным вертикальным профилем. В их основании располагалась дресва коренных пород, сменяемая выше зоной с гидрослюдами, и в верхней части разреза находилась толща каолиновых глин. Подобный стиль разреза древней мезозойской коры выветривания характерен для гранитных пород Урала, а для других коренных пород зональная последовательность в коре выветривания может быть иной. С древними корами выветривания связаны разнообразные полезные ископаемые, такие как бокситы — основное сырье для получения алюминия; гидроокислы и окислы железа, марганца; гидросиликаты никеля, развитые по ультраосновным породам и многие другие.
В настоящее время мы наблюдаем лишь сохранившиеся остатки древних кор выветривания, уцелевших от эрозии в западинах и карманах рельефа. А раньше они были площадными, занимали большие пространства или, наоборот, имели линейный характер, будучи приуроченными к раздробленным зонам крупных разломов.
Чаще всего перечисленные выше типы выветривания действуют одновременно. Однако под воздействием климата, водного режима, смены суточной и сезонной температур решающим становится какой- нибудь один тип, подчиняющийся климатической зональности. Так, во влажной тропической зоне химическое выветривание благодаря высокой температуре протекает интенсивно, с максимумом выщелачивания. Несколько менее энергично такое же выветривание происходит в таежно- подзолистой зоне. В пустынях, полупустынях и тундре преобладает физическое выветривание, тогда как химическое сходит на нет.
Выветривание происходит всегда и везде. Даже на пирамиде Хеопса в Гизе, в предместье Каира, за последние 1000 лет потеря материала поверхности известняковых блоков составила 0,2 мм за 1 тыс. лет, а гранитных облицовочных плит — 0,002 мм/год. Современное загрязнение воздушной среды способствует быстрому выветриванию древних каменных скульптур, храмов и памятников.
5.3. ОБРАЗОВАНИЕ ПОЧВ И ИХ СВОЙСТВА
Практически вся поверхность суши покрыта тонким слоем почвы, энергетически и геохимически весьма активным, в котором проявляется взаимодействие между живыми организмами, атмосферой, гидросферой и горными породами.
Более 100 лет назад великий русский ученый В. В. Докучаев показал, что почва представляет собой самостоятельное, очень тонкое природное тело, созданное из почвообразующих пород, растительности, животного мира, климата и рельефа. Коренные горные породы, на которых формируется почва, играют решающую роль в химическом и минеральном составе почвы, а живые организмы обусловливают формирование органического вещества в почве — гумуса. Академик В. И. Вернадский когда-то назвал почву биокосным телом, подразумевая под этим взаимодействие как живых организмов, так и коренных (косных) горных пород.
Почвы относятся к наиболее сложным природным телам, и в настоящее время на мировой почвенной карте их выделено 133 типа, разделяемые еще более дробно. Почвы различных типов характеризуются набором горизонтальных слоев, называемых генетическими горизонтами:
• А — гумусово-аккумулятивный поверхностный горизонт, в котором скапливаются органические вещества и элементы питания для растительности;
Е — элювиальный, или горизонт вымывания. Назван так потому, что нисходящий поток воды вымывает из негоFe,Mn,Са,Mg;В — иллювиальный, или горизонт вмывания, т. к. в нем накапливаются вещества, вымытые из горизонта Е;FL— горизонт скопления карбонатов кальция;G— глеевый горизонт с восстановительной обстановкой, в которойFe3+восстанавливается доFe2+;С иD— почвообразующие и подстилающие горные породы.
Эти
генетические горизонты в разных почвах
различаются между
Рис.
5.7. Нормальный почвенный профиль.
Горизонты: А0— неразложимпгиеся
или слабо разложившиеся органические
остатки,Aj —
гумусовый, А, — элювиальный, или
почвенного выветривания, В — иллювиальный,
или горизонт вмывания, С — коренные
породы
В
С
Во
всех типах почв: в черноземах, подзолистых,
тундровых, каштановых, тропических
и субтропических, торфянистых,
солончаковых, пойменных и др. — содержатся
все известные химические элементы.
Первое место занимает кислород, затем
кремний, алюминий и железо.собой,
и их сочетания отличаются большим
разнообразием, но, что важно, наличие
одного горизонта обусловлено существованием
другого, например иллювиальный
горизонт В, в котором накапливаются
вещества, не может существовать без
горизонта Е, из которого эти вещества
вымываются (см. также рис. 5.7).
Все остальные элементы в сумме не превышают 5-6 %, однако в торфянистых почвах много углерода. В каждом типе почв много органических веществ, но не тех, которые содержатся в растительных и живых организмах, а вновь образовавшихся. Это прежде всего гумино- вые кислоты и фульвокислоты, являющиеся характернейшей особенностью почв. Гуминовые кислоты — темные органические соединения с 50-60 % углерода и еще многих веществ. Темная окраска обусловлена длинной цепью сопряженных двойных связей - С = С- С = С-. Именно они придают черноземным почвам черный цвет. Гуминовые кислоты растворимы только в водных растворах щелочей, а фульвокислоты — и в воде.
Второй важнейшей составляющей любых почв является фракция, частицы которой размером 0,002-0,001 мм состоят преимущественно из глинистых минералов, например каолинита и монтмориллонита. Присутствуют также частицы кварца, полевых шпатов, слюд, а в засоленных почвах — минералы соли NaCl, КС1, MgCl,, СаС12, которые в период дождей растворяются, а в сухое время кристаллизуются.
Хорошие черноземные почвы важны для существования человека. Деградация почв — это катастрофа для всего живого. Она происходит из-за эрозионных и дефляционных процессов, засолений, техногенных воздействий. Почвенный гумус аккумулирует в себе колоссальные запасы углерода и биогенных элементов, а следовательно, он является и аккумулятором солнечной энергии. Почвенный покров Земли обеспечивает существование биоценозов и является необходимым условием существования жизни на Земле. В почве непрерывно протекают сложные обменные процессы, в результате которых свойства почв меняются и может происходить саморазвитие почв. Почвенный покров создается тысячелетиями, но неразумная техногенная и сельскохозяйственная деятельность может разрушить его в считаные годы, несмотря на то что почвы, даже черноземы, способны к самовосстановлению — гомеостазу. Основные геосферные функции почвы обусловлены ее положением на стыке живой и неживой природы. Почва — это основное средство сельскохозяйственного производства, относящееся к невозобновляемым природным ресурсам.
Следует отметить, что во многих разрезах четвертичных отложений наблюдаются горизонты погребенных почв, т. е. таких, которые уже не входят в сферу биологического круговорота, они не могут продуцировать гумус и являются мертвыми почвами.