- •1.2.1. Основные требования к модели
- •1.2.2. Абстрактная графовая модель. Некоторые понятия теории
- •1.2.3. Графовая модель процесса функционирования объекта
- •X „ Рис. 2.4. Построение граф-модели в пространстве свойств:
- •XI рассматриваются как основные функциональные сврйства
- •Xj. Такое ребро иногда называют дугой.
- •2.4. Переход от пространства свойств
- •2.5. Отображение неисправностей в объекте диагностирования
- •X, f, V, е, r, d рассмотрим процесс построения граф-
- •1 Там, где это необходимо, отдельной дугой могут учитываться и обратные
- •2.6.3. П ро ст ей ше е п ре дс та вл ен иег ра ф-м од ел ью а ви ац ио нн ог о г тд Авиационный газотурбинный двигатель представляет собой
- •6, 7. В результате этого этапа получают граф-модель в пространстве
- •I ямки сц
- •1. Формируется содержательное описание од
- •2. Создается принципиальная схема объекта
- •3. Представляются имеющиеся аналитические и качественные
- •1. Отождествление выбранных
- •2. Представление свойств (функций)
- •2. Строится укрупненная блочная функциональная
- •2. Входные и выходные воздействия функциональных
- •3.3), Можно представить определенным сочетанием элементов
- •2, Т; выходы блоков, являющиеся одновременно внешними
- •3 (Рг) включения наддува, а затем в коллекторы гермоотсека.
- •1. Составить в соответствии с (3.2) матрицу смежности
- •2. Вычислить матрицу
- •1 Это имеет место при решении задач диагностирования с помощью сложившихся
- •1 Импликантой булевой функции ф(*|, дг2, ..., * „) называется элементарная
- •4.3.1. А лг ор ит м п ро ст ог о г ол ос ов ан ия Использование любого из описанных подходов к решению
- •4.3.2. Алгоритм голосования с учетом весов
- •1. Множество в* диагностических параметров формируется
- •2. Если голоса всех вершин внутри рассмотренных трех групп
- •3. Если из-за одинакового числа голосов ряда вершин второй
- •4.3.3. Эвристический алгоритм
- •4.4, А), тупиковые (рис. 4.4,6);
- •4.2. Нумерация вершин граф-модели
- •10. Следующий по порядку за этим q номер должна получить
- •11. После выполнения правил п. 10 для каждой непронумерованной
- •5.1. Определение компонент достижимости
- •XI, соединяющих другие вершины графа с вершиной XI, называют
- •1.4 Будем множество вершин компоненты достижимости
- •Xj назовем число ребер простой ориентированной цепи, содержащей
- •XI и любой другой вершиной соответствуют условию:
- •1.10 Усеченным синдромом d(X{) будем называть множество вершин
- •5.2. Упорядочение вершин граф-модели
- •5.2.1. Оценка параметра по сводному фактору
- •5.2.2. Оценка параметра по фактору чувствительности
- •5.2.3. Оценка параметра по фактору разделительной
- •1 Выделение симптомов s, рассматривается ниже в § 5.6.
- •5.3. Экспертные методы в задаче упорядочения
- •5.3.1. Общие соображения
- •1 Имеется в виду объект упорядочения (а не диагностирования), в качестве
- •100 По усмотрению эксперта.
- •5.3) С обязательным учетом ограничений типа
- •5.3.3. Определение коэффициентов значимости факторов
- •I{Xj/XI) о состоянии параметра X/, получаемого при контроле
- •5.1. Весовая матрица с.,
- •5.2. Матрица частных расстояний Срас
- •1. Если какая-либо строка имеет несколько ненулевых элементов,
- •5.3. Таблица синдромов d (е,)
- •1 С е. Параметры ПараметD(
- •2 С еа 0 0 0 5 8 0 0 0 10 0 0 0 0 0 0 fu /2, г Diet)
- •2. Если к некоторой вершине х ведут несколько маршрутов от
- •3. Вершины ориентированного цикла учитываются только
- •5.4. Таблица усеченных синдромов d(ei)
- •5.5. Декомпозиция рабочей граф-модели
- •5.5.2. Декомпозиция граф-модели
- •5.6. Уточнение граф-модели и упорядочение вершин
- •5.6.1. Уточнение рабочей граф-модели
- •5.7. Таблица близости р
- •1 В табл. 5.6 сведены результирующие вектор-строки. Дальше в таблицах
- •5.7. Выявление эффективного множества диагностических
- •5.7.1. Динамическая перенумерация вершин
- •5.8. Таблица покрытия
- •Xk в состав множества в для получения информации о дефекте
- •5.7.2. Выбор диагностических параметров методом
- •4 И 5. Действия по шагам 3— повторять по порядку для
- •32 Характерных дефектов содержит 11 диагностических
- •5.7.3. Выбор диагностических параметров
- •5.7, 5.8, 5.9) Излагались относительно одной не разделенной
- •1,2,3 GTiyT
- •1. Описанная методика упорядочения вершин граф-модели
- •2. Для решения задачи векториальной оптимизации используется
- •3. Применение правил покрытия таблицы для определения
- •4. На базе выбранного множества диагностических параметров
- •6.1. О рг ан из ац ияд иа гн ос ти че ск оЙинфор м ации Важную роль в организации измерений Значений диагностических
- •6.2. Построение схемы диагностирования
- •6.3. Образование распознаваемых классов
- •6.3.1. М ет одп ос ле до ва те ль ны х д их от ом ийвз ад ач е
- •1 Если они не поименованы иначе.
- •2 От греческого бЫотоцла —разделение надвое.
- •1V точек, которые можно сделать плоскостью, имеющей
- •6.1. Таблица линейных классификаций
- •6.3, А и б). Процедура диагностирования
- •6.3.2. М ет одф ор ми ро ва ни я у сл ов ны х к ла сс ов Другим методом, позволяющим экономить машинные ресурсы
- •§ 6.2, Позволяет определить взаимосвязь между диагностическими
- •1000100...—Класс Рт.
- •6.4.1. О бо сн ов ан иев ыб ор а у сл ов ны х к ла сс ов Мы рассмотрим этот вопрос в соответствии с работой [13],
- •7.1. Интерактивные процедуры в системе функционального
- •7.2. Стадии и этапы обработки
- •1 Этап —определение компонент достижимости p(XI) для
- •2 Этап —определение интервала и границ варьирования значений
- •3 Этап —уточнение (конкретизация) подходящего (допустимого)
- •32 Дефектов.
- •2, 13 Двудольных графов на множествах вершин Хк- в качестве
- •1 Точнее, элементов множества z' (см. Гл. 5 ), так как z' включает в себя
- •Xе или множества неулучшаемых решений (множество Парето).
- •13 Значений ркр, среди которых необходимо найти оптимальное
- •7.4. Стадия формирования эффективного множества
- •4 Элемент для включения его в набор эффективных диагностических
- •7.5. Покрытие таблицы для двухуровневой задачи распознавания
- •7.7), В ряде случаев близкие состояния могут оказаться с помощью
- •7.6. Граф-модель проточной части авиационного двухконтурного
- •Xj. Это соответствует установлению между функциональными
- •§ 4.1 Применительно к авиационному гтд, производилось по
- •2 Например, при наличии технологических заглушек для измерений давления
- •7.1. Таблица близости
- •7.2. Погрешности измерения параметров гтд
- •1 В соответствии с техническими показателями системы измерения параметров
- •7.3. Покрытие диагностическими параметрами возможных состояний проточной части гтд
- •8.1. Алгебраические методы и граф-модели
- •8.2. Допустимые таблицы, различающая мера, вес признака
- •1 Равные строки в каждой отдельной таблице допускаются.
- •8.3. Выявление весов признаков
- •1. Формируется таблица т(1,0):
- •2. Таблица 7'(|,0) с целью сокращения времени машинной
- •3. Определяются тупиковые тесты. Процедура базируется на
- •2. Таблица преобразуется в таблицу т*. Подсчитывается число единиц
- •3. Определяются тупиковые тесты.
- •8.4. Процедуры классификации состояний
- •8.5. Метод декомпозиции в задаче распознавания
- •8.6. Система распознавания и классификация клара
- •8.1. Таблица функциональных назначений модулей
- •1 Уравнение Бернулли для реальной жидкости имеет вид:
- •14 (/З, Нр ). Этими параметрами покрываются все четыре7 дефекта
- •8.3. Таблица покрытия (для параметров работоспособности н)
- •8.4. Таблица покрытия (для диагностических параметров в)
- •1Дьлица I*1,3
- •I аьлина I*
- •ITTsITi I j*‘ 77i
- •1 Признак1числ0т/т18еса
- •I аьЛи на?&г• “
- •6≪ Класс 0
- •03.09.91. Формат 6 0 X 8 8 1 / 16- Бум. Офсетная № 2.
- •15,32. Тираж 800 экз. Заказ № 666. Цена 5 руб.
- •129041, Москва, б. Переяславская, 46.
- •103064, Москва, Басманный туп., 6а,
- •1Mmmmmm
- •Ihak1числ0т/тibeca Ri
- •5|Гап: класс I ≪ dv , класс 0 * d, , d≫ , d2
5.8. Таблица покрытия
D
Z X d3 d" d\ di Фнач Ф„з≫
г≫ ег 6 0,950
24 /з 5 0,890 0,60
Z ю V 4 0,883 0,65
Z3 f 2 5 0,840
Z5 г 3 2 0,806 0,691
Z6 d\ 6 0,800
Z7 d'( 6 0,800
Z 9 ез 6 0,750
Z 1
h
S\ 3 0,675 0,500
Z2 S2 2 0,616
h 3 2 4 2
Порядок
рассмотрения
3 1 1 2
144
Рис. 5.11. Двудольный граф соответствия L
маршруты отображения дефектов d в других вершинах граф-
модели, если расстояния этих маршрутов р ^ р кр. Рассмотрим
более подробно таблицу близостей р на примере табл. 5.7.
Таблица может рассматриваться как двудольный граф L , где
существует бинарное отношение v между элементами двух множеств:
множества дефектов D и множества X вершин графа.
При выделении симптомов s e S и дефектов d e D вместо
множества X рассматривается другое множество Z, такое, что
z= ;T U SU £ )= izi, • .• 24-
Двудольный граф показан на рис. 5.11. Ребра графа L пред:
ставляют маршруты, числа на ребрах —значения расстояний р
(близости). Имея информацию в виде двудольного графа, можно
приступить к выбору наиболее эффективного подмножества В
диагностических параметров из всего их множества, в данном
случае —Z. Эффективность подмножества В в данном случае
подразумевает наилучшее удовлетворение требований, сформулированных
в § 4.1. С учетом этих требований множество
(подмножество) В возможно формировать из начальных элементов
упорядоченного ряда при условии обеспечения охвата всех
распознаваемых дефектов. Однако это не обеспечивает требования
минимизации мощности множества В, так как необходимость
включения последующих параметров упорядоченного ряда в
состав множества В уменьшается по мере включения в В предыдущих
параметров.
Таким образом, значения показателя информативности £2
и показателя эффективности Ф вершин зависят от того, какие
вершины уже включены в В. Например, дефект dj связан в графе
с параметром xt маршрутом с расстоянием р (dj, xi) и с параметром
Хк маршрутом с расстоянием р(dj, Хк)- В таком случае количество
дополнительно получаемой информации о dj при контроле
параметра хк уменьшается, если ранее установлен контроль
над параметром Вместе с тем уменьшается необходимость
включения в множество В и параметра хк. Для учета этого
145
фактора необходимо иметь процедуру динамической перенумерации
вершин.
После включения в множество В или после присвоения первого
номера вершине х, с максимальным значением показателя
Ф (в дальнейшем после каждого очередного шага) значения
Q и Ф некоторых вершин Xk, x*+i корректируются. Эта корректировка
производится следующим образом:
а) если дефект dj связан с параметром х* менее тесно, чем
с Xi, т. е. р(dj, Xfc)^p(dj, х,), необходимость включения параметра
Xk в состав множества в для получения информации о дефекте
dj отпадает, и из значения показателя £2 для параметра Xk
вычитается расстояние р(dj, xk) ;
б) если дефект dj связан с параметром х* более тесно, чем с
х„т. е. р (dj, X k )> p (d j , X i ) , то необходимость включения
параметра х* в состав множества В не уменьшается, поскольку
при контроле параметра х* есть возможность получить дополнительную
информацию о дефекте dj, поэтому значение показателя
Q для параметра х* остается без изменений.
Соответствующим образом корректируются значения Ф.
Дальнейшие действия над моделью производятся с учетом откорректированных
значений Q и Ф.
Динамическая процедура перенумерации вершин графа делает
возможным в большей степени минимизировать количество
элементов множества диагностических параметров В.
