- •1.2.1. Основные требования к модели
- •1.2.2. Абстрактная графовая модель. Некоторые понятия теории
- •1.2.3. Графовая модель процесса функционирования объекта
- •X „ Рис. 2.4. Построение граф-модели в пространстве свойств:
- •XI рассматриваются как основные функциональные сврйства
- •Xj. Такое ребро иногда называют дугой.
- •2.4. Переход от пространства свойств
- •2.5. Отображение неисправностей в объекте диагностирования
- •X, f, V, е, r, d рассмотрим процесс построения граф-
- •1 Там, где это необходимо, отдельной дугой могут учитываться и обратные
- •2.6.3. П ро ст ей ше е п ре дс та вл ен иег ра ф-м од ел ью а ви ац ио нн ог о г тд Авиационный газотурбинный двигатель представляет собой
- •6, 7. В результате этого этапа получают граф-модель в пространстве
- •I ямки сц
- •1. Формируется содержательное описание од
- •2. Создается принципиальная схема объекта
- •3. Представляются имеющиеся аналитические и качественные
- •1. Отождествление выбранных
- •2. Представление свойств (функций)
- •2. Строится укрупненная блочная функциональная
- •2. Входные и выходные воздействия функциональных
- •3.3), Можно представить определенным сочетанием элементов
- •2, Т; выходы блоков, являющиеся одновременно внешними
- •3 (Рг) включения наддува, а затем в коллекторы гермоотсека.
- •1. Составить в соответствии с (3.2) матрицу смежности
- •2. Вычислить матрицу
- •1 Это имеет место при решении задач диагностирования с помощью сложившихся
- •1 Импликантой булевой функции ф(*|, дг2, ..., * „) называется элементарная
- •4.3.1. А лг ор ит м п ро ст ог о г ол ос ов ан ия Использование любого из описанных подходов к решению
- •4.3.2. Алгоритм голосования с учетом весов
- •1. Множество в* диагностических параметров формируется
- •2. Если голоса всех вершин внутри рассмотренных трех групп
- •3. Если из-за одинакового числа голосов ряда вершин второй
- •4.3.3. Эвристический алгоритм
- •4.4, А), тупиковые (рис. 4.4,6);
- •4.2. Нумерация вершин граф-модели
- •10. Следующий по порядку за этим q номер должна получить
- •11. После выполнения правил п. 10 для каждой непронумерованной
- •5.1. Определение компонент достижимости
- •XI, соединяющих другие вершины графа с вершиной XI, называют
- •1.4 Будем множество вершин компоненты достижимости
- •Xj назовем число ребер простой ориентированной цепи, содержащей
- •XI и любой другой вершиной соответствуют условию:
- •1.10 Усеченным синдромом d(X{) будем называть множество вершин
- •5.2. Упорядочение вершин граф-модели
- •5.2.1. Оценка параметра по сводному фактору
- •5.2.2. Оценка параметра по фактору чувствительности
- •5.2.3. Оценка параметра по фактору разделительной
- •1 Выделение симптомов s, рассматривается ниже в § 5.6.
- •5.3. Экспертные методы в задаче упорядочения
- •5.3.1. Общие соображения
- •1 Имеется в виду объект упорядочения (а не диагностирования), в качестве
- •100 По усмотрению эксперта.
- •5.3) С обязательным учетом ограничений типа
- •5.3.3. Определение коэффициентов значимости факторов
- •I{Xj/XI) о состоянии параметра X/, получаемого при контроле
- •5.1. Весовая матрица с.,
- •5.2. Матрица частных расстояний Срас
- •1. Если какая-либо строка имеет несколько ненулевых элементов,
- •5.3. Таблица синдромов d (е,)
- •1 С е. Параметры ПараметD(
- •2 С еа 0 0 0 5 8 0 0 0 10 0 0 0 0 0 0 fu /2, г Diet)
- •2. Если к некоторой вершине х ведут несколько маршрутов от
- •3. Вершины ориентированного цикла учитываются только
- •5.4. Таблица усеченных синдромов d(ei)
- •5.5. Декомпозиция рабочей граф-модели
- •5.5.2. Декомпозиция граф-модели
- •5.6. Уточнение граф-модели и упорядочение вершин
- •5.6.1. Уточнение рабочей граф-модели
- •5.7. Таблица близости р
- •1 В табл. 5.6 сведены результирующие вектор-строки. Дальше в таблицах
- •5.7. Выявление эффективного множества диагностических
- •5.7.1. Динамическая перенумерация вершин
- •5.8. Таблица покрытия
- •Xk в состав множества в для получения информации о дефекте
- •5.7.2. Выбор диагностических параметров методом
- •4 И 5. Действия по шагам 3— повторять по порядку для
- •32 Характерных дефектов содержит 11 диагностических
- •5.7.3. Выбор диагностических параметров
- •5.7, 5.8, 5.9) Излагались относительно одной не разделенной
- •1,2,3 GTiyT
- •1. Описанная методика упорядочения вершин граф-модели
- •2. Для решения задачи векториальной оптимизации используется
- •3. Применение правил покрытия таблицы для определения
- •4. На базе выбранного множества диагностических параметров
- •6.1. О рг ан из ац ияд иа гн ос ти че ск оЙинфор м ации Важную роль в организации измерений Значений диагностических
- •6.2. Построение схемы диагностирования
- •6.3. Образование распознаваемых классов
- •6.3.1. М ет одп ос ле до ва те ль ны х д их от ом ийвз ад ач е
- •1 Если они не поименованы иначе.
- •2 От греческого бЫотоцла —разделение надвое.
- •1V точек, которые можно сделать плоскостью, имеющей
- •6.1. Таблица линейных классификаций
- •6.3, А и б). Процедура диагностирования
- •6.3.2. М ет одф ор ми ро ва ни я у сл ов ны х к ла сс ов Другим методом, позволяющим экономить машинные ресурсы
- •§ 6.2, Позволяет определить взаимосвязь между диагностическими
- •1000100...—Класс Рт.
- •6.4.1. О бо сн ов ан иев ыб ор а у сл ов ны х к ла сс ов Мы рассмотрим этот вопрос в соответствии с работой [13],
- •7.1. Интерактивные процедуры в системе функционального
- •7.2. Стадии и этапы обработки
- •1 Этап —определение компонент достижимости p(XI) для
- •2 Этап —определение интервала и границ варьирования значений
- •3 Этап —уточнение (конкретизация) подходящего (допустимого)
- •32 Дефектов.
- •2, 13 Двудольных графов на множествах вершин Хк- в качестве
- •1 Точнее, элементов множества z' (см. Гл. 5 ), так как z' включает в себя
- •Xе или множества неулучшаемых решений (множество Парето).
- •13 Значений ркр, среди которых необходимо найти оптимальное
- •7.4. Стадия формирования эффективного множества
- •4 Элемент для включения его в набор эффективных диагностических
- •7.5. Покрытие таблицы для двухуровневой задачи распознавания
- •7.7), В ряде случаев близкие состояния могут оказаться с помощью
- •7.6. Граф-модель проточной части авиационного двухконтурного
- •Xj. Это соответствует установлению между функциональными
- •§ 4.1 Применительно к авиационному гтд, производилось по
- •2 Например, при наличии технологических заглушек для измерений давления
- •7.1. Таблица близости
- •7.2. Погрешности измерения параметров гтд
- •1 В соответствии с техническими показателями системы измерения параметров
- •7.3. Покрытие диагностическими параметрами возможных состояний проточной части гтд
- •8.1. Алгебраические методы и граф-модели
- •8.2. Допустимые таблицы, различающая мера, вес признака
- •1 Равные строки в каждой отдельной таблице допускаются.
- •8.3. Выявление весов признаков
- •1. Формируется таблица т(1,0):
- •2. Таблица 7'(|,0) с целью сокращения времени машинной
- •3. Определяются тупиковые тесты. Процедура базируется на
- •2. Таблица преобразуется в таблицу т*. Подсчитывается число единиц
- •3. Определяются тупиковые тесты.
- •8.4. Процедуры классификации состояний
- •8.5. Метод декомпозиции в задаче распознавания
- •8.6. Система распознавания и классификация клара
- •8.1. Таблица функциональных назначений модулей
- •1 Уравнение Бернулли для реальной жидкости имеет вид:
- •14 (/З, Нр ). Этими параметрами покрываются все четыре7 дефекта
- •8.3. Таблица покрытия (для параметров работоспособности н)
- •8.4. Таблица покрытия (для диагностических параметров в)
- •1Дьлица I*1,3
- •I аьлина I*
- •ITTsITi I j*‘ 77i
- •1 Признак1числ0т/т18еса
- •I аьЛи на?&г• “
- •6≪ Класс 0
- •03.09.91. Формат 6 0 X 8 8 1 / 16- Бум. Офсетная № 2.
- •15,32. Тираж 800 экз. Заказ № 666. Цена 5 руб.
- •129041, Москва, б. Переяславская, 46.
- •103064, Москва, Басманный туп., 6а,
- •1Mmmmmm
- •Ihak1числ0т/тibeca Ri
- •5|Гап: класс I ≪ dv , класс 0 * d, , d≫ , d2
5.2.3. Оценка параметра по фактору разделительной
способности
Разделительную способность параметра дс, при распознавании
дефектов удобно оценивать по числу дефектов D, от изображения
которых достижима по графу соответствующая вершина
xi. Наилучшей разделительной способностью (г|з=1) обладает
параметр, если соответствующая ему вершина достижима из
одного дефекта. Наихудшей из возможных для данной задачи
разделительной способностью (ф = 0 ) обладает параметр, достижимый
от наибольшего числа (или от всех) дефектов, подлежащих
распознаванию.
Из этих условий ф определяется в соответствии с соотношением:
% = (5.15)
max
где /[Т1ах —максимальное число дефектов, от изображения которых достижима
какая-либо вершина графа.
Оценки ф определяются для каждой вершины при выделении
симптомов1 и дефектов —для каждого симптома S, и дефекта
dj. Разделительная __________способность ф(^,) структурного параметра,
соответствующего дефекту, обычно равна единице.
Значимость факторов условий измерения параметров, чувствительности
к появлению дефектов и различительной способности
в диагностике учитываются коэффициентами а, р и 7 .
Уже отмечалось, что они определяются методом экспертных
оценок.
После определения оценок А, £2, г|з для каждой вершины
следует нормировать значения A, Q и гр, приравнивая их максимальные
значения единице. В дальнейшем для каждой вершины
или каждого симптома S и дефекта d рассчитывается показатель
Ф „а вершины располагаются в ряд по убыванию этого показателя.
1 Выделение симптомов s, рассматривается ниже в § 5.6.
116
Параметры с большим Ф в большей степени соответствуют
приведенным выше требованиям (кроме требований 1, см. § 4.1,
и минимизации мощности множества D ) .
5.3. Экспертные методы в задаче упорядочения
5.3.1. Общие соображения
Экспертные методы в задаче упорядочения возникают при
оценке различных элементов граф-модели по таким сложным
и плохо определенным факторам, как качество, важность, полезность,
ценность, нуждаемость и т. п.
Эти факторы, как и многие другие, не имеют четких определений,
ограничивающих их интерпретацию. В этих случаях упорядочение
производится экспертами, что придает ему субъективный
характер.
Упорядочение вершин граф-модели объекта диагностирования
необходимо для выявления наиболее эффективных диагностических
параметров. Однако человек обычно не в состоянии упорядочить
объекты по большому количеству факторов и возникает
задача конструирования математической модели упорядочения
объекта1.
За основу упорядочивающей закономерности удобно выбрать
многочлен вида
У = к^^Хг) + • .•+ £ц/ц(*ц)+... + knfn(x„) , (5.16)
где у —результирующий признак; хг —значение фактора относительно ц-й
вершины, ц = 1, 2, ..., п\ п —число учитываемых факторов; —коэффициент
п
значимости фактора; 2 /гц= 1.
ц= 1
Качественные факторы должны быть квантифицированы, т. е.
должны быть введены количественные оценки для всех их градаций,
а сами значения факторов следует нормировать. Поэтому
значения факторов хц заменяются на ztl= f fl(xvi), где выражено
в долях, процентах или баллах, при этом одинаково для
всех ц.
Частные зависимости 2 ц = /т(хц) и коэффициенты значимости
задаются экспертами.
Отметим, что группа экспертов, неспособная упорядочить
объекты по множеству факторов одновременно, вполне способна
оценить и упорядочить объекты по каждому фактору в отдельности.
