- •Пояснительная записка
- •Конспект лекций содержание
- •1. Введение в генетику план
- •1. Предмет генетики, понятие о наследственности и изменчивости
- •1.2. Этапы развития и разделы генетики
- •1.3. Генетика в системе других наук. Достижения генетики, внедренные в практику человеческой деятельности
- •1.4. Методы генетики
- •2. Структурно-функциональная организация хромосом план
- •1. Строение хромосом
- •2. Упаковка днк в разных ядерных структурах, в том числе в хромосомах
- •3. Кариотип и идиограмма
- •3. Закономерности наследования признаков
- •3.1 Моногибридное скрещивание план
- •1. I и II законы Менделя. Условия выполнения второго закона Менделя
- •2. Фенотип и генотип
- •3. Анализирующее, возвратное, реципрокные скрещивания
- •3.2 Дигибридное и тригибридное скрещивание план
- •1. Дигибридное скрещивание
- •2. Тригибридное и полигибридное скрещивание
- •3. Типы взаимодействия неаллельных генов
- •3.3 Генетика пола план
- •1. Типы определения пола
- •2. Наследование признаков, сцепленных с полом.
- •3.4 Сцепление генов и кроссинговер план
- •1.Генетическое доказательство сцепленного наследования
- •2. Кроссинговер. Типы кроссинговера. Факторы, влияющие на кроссинговер
- •3. Генетические карты хромосом. Трехфакторное скрещивание
- •4. Понятие об интерференции и коинциденции
- •3.5 Рекомбинация у бактерий и вирусов план
- •1. Микроорганизмы как объект генетических исследований
- •2. Организация генетического аппарата у бактерий и вирусов
- •3. Трансформация
- •4. Трансдукция. Использование бактериофагов для картирования хромосомы бактерий
- •5. Конъюгация бактерий
- •4. Молекулярные механизмы генетических процессов
- •4.1 Генетическая роль днк и рнк план
- •1. Генетическая роль днк и рнк, ее доказательство
- •2. Репликация
- •3. Полуконсервативный способ репликации. Опыты Мезельсона и Сталя
- •4. Ферменты репликации, схема репликационной вилки, особенности репликации днк у про- и эукариот
- •4.2 Репарация днк план
- •1. Основные типы репарации днк
- •2 .Рестрикция-модификация днк
- •4.3 Эволюция представлений о структуре и функциях гена план
- •1. Хромосомная теория гена
- •2. Функциональный и рекомбинационный тесты на аллелизм
- •3. Центровая теория гена
- •4. Псевдоаллелизм
- •4.4 Структура и функции гена план
- •1. Тонкая структура гена. Работы с. Бензера
- •2. Экзонно-интронная структура гена.
- •3. Сплайсинг и альтернативный сплайсинг
- •4.5 Транскрипция план
- •1. Этапы биосинтеза рнк
- •2. Транскрипция
- •3. Организация промоторных и терминаторных участков у про- и эукариот
- •4. Процессинг первичных транскриптов у эукариот
- •5. Обратная транскрипция
- •4.6 Генетический код и трансляция план
- •1. Генетический код
- •2. Составляющие элементы и стадии трансляции
- •5. Изменчивость и мутагенез:
- •5.1 Наследственная и ненаследственная изменчивость. Мутации и их виды план
- •1. Классификация изменчивости. Ненаследственная изменчивость и ее типы
- •2. Наследственная изменчивость и ее типы
- •3. Мутагены и метагенез
- •4. Классификация мутаций на хромосомном уровне
- •5.2 Молекулярные механизмы мутагенеза, генные и хромосомные мутации план
- •1. Классификация генных мутаций
- •2. Причины генных мутаций
- •3. Значимость генных мутаций для жизнедеятельности организма
- •4. Хромосомные мутации. Классификация хромосомных мутаций
- •5. Цитологические и генетические методы обнаружения хромосомных мутаций
- •6. Значение хромосомных перестроек в эволюции
- •5.3 Геномные мутации план
- •1. Классификация, механизмы возникновения геномных мутаций
- •2. Жизнеспособность и плодовитость полиплоидных и анеуплоидных форм.
- •Искусственное получение полиплоидов
- •5.4 Спонтанный и индуцированный мутагенез план
- •1. Закон н.И. Вавилова о гомологических рядах в наследственной изменчивости
- •2. Спонтанные и индуцированные мутации
- •3.Мутагенные факторы среды
- •6. Генетические основы онтогенеза план
- •1. Онтогенез: основные понятия, дифференцировка и детерминация
- •2. Эпигеномная наследственность
- •Эпителия головастика:
- •3. Транскрипция и амплификация генов в оогенезе, их дифференциальная активность в онтогенезе
- •4. Роль генетических факторов в определении продолжительности жизни
- •7. Генетика популяций
- •7.1 Генетическая характеристика популяций план
- •1. Понятие и типы популяций
- •2. Генетическая характеристика популяций апомиктов
- •3. Генетическая структура популяции самоопылителей
- •4. Генетическая структура панмиктических популяций
- •5. Закон Харди-Вайнберга
- •7.2 Факторы генетической динамики популяций план
- •1. Основные факторы генетической динамики популяций
- •2. Генетический груз.
- •8. Генетика человека
- •8.1 Человек как объект генетических исследований план
- •1. Человек как объект генетических исследований. Задачи медицинской генетики
- •2. Основы медицинской генетики. Классификация наследственных болезней человека
- •3. Методы изучения генетики человека
- •4. Геном человека
- •8.2 Генотерапия план
- •1. Основные принципы и методология генотерапии
- •2. Достижения, перспективы и проблемы генной терапии
- •9. Генетические основы селекции
- •9.1 Генетика как теоритическая основа селекции план
- •1. Селекция как наука
- •2. Исходный материал в селекции
- •3. Системы скрещиваний в селекции
- •4. Гетерозис
- •5. Методы отбора
- •6. Подбор
- •9.2 Основы селекции рыб план
- •1.Цели и задачи селекции рыб
- •2. Селекция карпа
- •Место дисциплины в системе подготовки специалиста
- •2 Цели и задачи учебной дисциплины
- •Требования к уровню освоения учебной дисциплины
- •Содержание учебного материала
- •Тема 1 введение. История развития генетики
- •Тема 2 материальные основы наследственности
- •Тема 3 закономерности наследования признаков
- •Тема 4 молекулярные основы наследственности
- •Тема 5 изменчивость
- •Тема 6 генетические основы онтогенеза
- •Тема 7 генетика популяций
- •Тема 8 генетика человека
- •Тема 9 генетические основы селекции
- •Учебно-методическая карта учебной дисциплины
- •Перечень основной и дополнительной литературы:
- •Перечень тестовых заданий
2 .Рестрикция-модификация днк
Система рестрикции-модификации – ферментативная система бактерий, разрушающая попавшую в клетку чужеродную ДНК. Основная ее функция – защита клетки от чужеродного генетического материала, например, бактериофагов и плазмид. Для компонентов системы характерны два типа активности – метилтрансферазная (метилазная) и эндонуклеазная. Система рестрикции-модификации специфична по отношению к определенным последовательностям нуклеотидов в ДНК, называемых сайтами рестрикции. Если нуклеотиды в сайте рестрикции не метилированы, эндонуклеаза рестрикции вносит в ДНК двуцепочечный разрыв (часто со смещением на несколько нуклеотидов между цепями), при этом биологическая роль молекулы ДНК нарушается. Если ДНК в месте действия ферментов рестрикции метилирована, ее расщепление не происходит. Подобная специфичность системы позволяет бактериям проводить селективное расщепление чужеродной ДНК, не затрагивая собственную. Функционирование системы можно рассмотреть на бактериофаге λ и клеток штамма E. Сoli K-12. Развитие фага приводит к эффективности посева равной единице: каждая частица бактериофага заражает бактериальную клетку, репродуцируется в ней и дает потомство.
Если фаголизатом, полученным после цикла развития фага λ на бактериях штамма E. Сoli K-12, инфицировать бактерии E. Сoli штамма C, то эффективность посева будет значительно ниже. Следовательно, не каждая фаговая частица по каким-то причинам способна размножаться в клетках нового хозяина. Если же фаговые частицы, образовавшиеся после цикла репродукции на клетках E. Сoli C, использовать для заражения такой же культуры (E. Сoli C), то размножение бактериофага λ вновь будет проходить нормально, и эффективность посева составит единицу. Однако, если перед заражением штамма E. coli C фаг пропассировать на штамме E. Сoli K-12, то на штамме E. Сoli C он будет развиваться с низкой эффективностью. Таким образом, при смене хозяина наблюдается значительное ограничение размножения фага λ, которое получило название рестрикции.
Рестрикция обусловлена расщеплением инфицирующей ДНК фага под действием фермента, специфичного для штамма – хозяина. Ферменты эти получили название рестриктаз. Благодаря своему нуклеазному действию они препятствуют поддержанию чужеродной ДНК в бактериальной клетке. С другой стороны, если фаг проделал полный цикл репродукции в новом хозяине, то в дальнейшем в этом же хозяине, он не подвергается ограничению, или рестрикции. В бактериальной клетке кроме рестриктаз синтезируются другие ферменты – метилазы, которые призваны защищать собственную ДНК от действия клеточных рестриктаз. Метилазы изменяют или модифицируют собственную ДНК путем метилирования или гликозилирования аденина или цитозина. Этот процесс известен под названием модификации. Ферменты модификации защищают ДНК хозяина от действия эндонуклеаз рестрикции. При этом одна и та же молекула может претерпевать разные типы модификации ДНК. Так, можно заразить мутант штамма E .Сoli B, утерявший способность к рестрикции, но сохранивший способность к модификации, фагом λ K, несущим утяжеляющую метку. Методом центрифугирования в градиенте плоскости и лизатах таких клеток можно обнаружить частицы бактериофага, несущие одну из родительских цепей ДНК и совмещающие типы модификации, характерные для штамма K и для штамма B.
Существенную роль в модификации ДНК играет метионин. Если индуцировать лизогенный по фагу λ и ауксотрофный по метионину штамм E. Сoli на среде без метионина и добавить эту аминокислоту лишь в конце латентного периода, то ДНК в значительной части фагов модификации не затронут. Выяснилось, что в ходе модификации донором метильных групп служит S-аденозилметионин.
ДНК бактериофага, прошедшего полный цикл развития в новом хозяине, под действием метилаз модифицируется таким же образом, как и ДНК клетки-хозяина. Она метилируется и приобретает свойства, защищающие ее от воздействия рестрикционных ферментов данного штамма бактерий. В настоящее время все известные рестриктазы в зависимости от потребностей в кофакторах и характеру расщепления нуклеотидных последовательностей ДНК разделяют на 3 типа: I, II и III.
Рестриктазы I типа являются сложными белками с тремя различными типами субъединиц (эндонуклеаза, метилаза, фермент узнавания). Для действия этих ферментов требуются в качестве кофакторов АТФ, S-аденозинмонофосфат и ионы Mg2+. Расщепление ДНК совмещено с гидролизом АТФ. Рестриктазы I типа узнают сайт рестрикции, но расщепляют последовательность ДНК на произвольном расстоянии от сайта узнавания (от нескольких десятков до нескольких тысяч п.о.). В результате образуются самые разнообразные фрагменты ДНК, или рестрикты. Такие рестриктазы невозможно использовать для решения генно-инженерных задач.
Системы рестрикции и модификации II типа представлены двумя отдельными белками (рестрикционная эндонуклеаза, модификационная метилаза).
Рестриктазы II типа – относительно просто организованные белки, состоящие из двух субъединиц одного типа со сравнительно небольшой молекулярной массой. Для специфического действия этих ферментов нужны только ионы Mg2+. Рестриктазы II типа характеризуются тем, что у них сайты узнавания и места рестрикции совпадают.
Рестриктазы III типа имеют некоторое сходство с рестриктазами I типа. Фермент состоит из двух различных субъединиц (эндонуклеаза, метилаза) и поэтому бифункционален, т.е. обладает как рестриктазной, так и метилазной активностью. Для проявления эндонуклеазной активности требуются только АТФ и ионы Mg2+. Расщепление ДНК не сопровождается гидролизом АТФ. Рестриктазы III типа гидролизуют ДНК на расстоянии 20–39 нуклеотидных пар от сайтов узнавания и поэтому также довольно редко используются для практических целей.
