- •Пояснительная записка
- •Конспект лекций содержание
- •1. Введение в генетику план
- •1. Предмет генетики, понятие о наследственности и изменчивости
- •1.2. Этапы развития и разделы генетики
- •1.3. Генетика в системе других наук. Достижения генетики, внедренные в практику человеческой деятельности
- •1.4. Методы генетики
- •2. Структурно-функциональная организация хромосом план
- •1. Строение хромосом
- •2. Упаковка днк в разных ядерных структурах, в том числе в хромосомах
- •3. Кариотип и идиограмма
- •3. Закономерности наследования признаков
- •3.1 Моногибридное скрещивание план
- •1. I и II законы Менделя. Условия выполнения второго закона Менделя
- •2. Фенотип и генотип
- •3. Анализирующее, возвратное, реципрокные скрещивания
- •3.2 Дигибридное и тригибридное скрещивание план
- •1. Дигибридное скрещивание
- •2. Тригибридное и полигибридное скрещивание
- •3. Типы взаимодействия неаллельных генов
- •3.3 Генетика пола план
- •1. Типы определения пола
- •2. Наследование признаков, сцепленных с полом.
- •3.4 Сцепление генов и кроссинговер план
- •1.Генетическое доказательство сцепленного наследования
- •2. Кроссинговер. Типы кроссинговера. Факторы, влияющие на кроссинговер
- •3. Генетические карты хромосом. Трехфакторное скрещивание
- •4. Понятие об интерференции и коинциденции
- •3.5 Рекомбинация у бактерий и вирусов план
- •1. Микроорганизмы как объект генетических исследований
- •2. Организация генетического аппарата у бактерий и вирусов
- •3. Трансформация
- •4. Трансдукция. Использование бактериофагов для картирования хромосомы бактерий
- •5. Конъюгация бактерий
- •4. Молекулярные механизмы генетических процессов
- •4.1 Генетическая роль днк и рнк план
- •1. Генетическая роль днк и рнк, ее доказательство
- •2. Репликация
- •3. Полуконсервативный способ репликации. Опыты Мезельсона и Сталя
- •4. Ферменты репликации, схема репликационной вилки, особенности репликации днк у про- и эукариот
- •4.2 Репарация днк план
- •1. Основные типы репарации днк
- •2 .Рестрикция-модификация днк
- •4.3 Эволюция представлений о структуре и функциях гена план
- •1. Хромосомная теория гена
- •2. Функциональный и рекомбинационный тесты на аллелизм
- •3. Центровая теория гена
- •4. Псевдоаллелизм
- •4.4 Структура и функции гена план
- •1. Тонкая структура гена. Работы с. Бензера
- •2. Экзонно-интронная структура гена.
- •3. Сплайсинг и альтернативный сплайсинг
- •4.5 Транскрипция план
- •1. Этапы биосинтеза рнк
- •2. Транскрипция
- •3. Организация промоторных и терминаторных участков у про- и эукариот
- •4. Процессинг первичных транскриптов у эукариот
- •5. Обратная транскрипция
- •4.6 Генетический код и трансляция план
- •1. Генетический код
- •2. Составляющие элементы и стадии трансляции
- •5. Изменчивость и мутагенез:
- •5.1 Наследственная и ненаследственная изменчивость. Мутации и их виды план
- •1. Классификация изменчивости. Ненаследственная изменчивость и ее типы
- •2. Наследственная изменчивость и ее типы
- •3. Мутагены и метагенез
- •4. Классификация мутаций на хромосомном уровне
- •5.2 Молекулярные механизмы мутагенеза, генные и хромосомные мутации план
- •1. Классификация генных мутаций
- •2. Причины генных мутаций
- •3. Значимость генных мутаций для жизнедеятельности организма
- •4. Хромосомные мутации. Классификация хромосомных мутаций
- •5. Цитологические и генетические методы обнаружения хромосомных мутаций
- •6. Значение хромосомных перестроек в эволюции
- •5.3 Геномные мутации план
- •1. Классификация, механизмы возникновения геномных мутаций
- •2. Жизнеспособность и плодовитость полиплоидных и анеуплоидных форм.
- •Искусственное получение полиплоидов
- •5.4 Спонтанный и индуцированный мутагенез план
- •1. Закон н.И. Вавилова о гомологических рядах в наследственной изменчивости
- •2. Спонтанные и индуцированные мутации
- •3.Мутагенные факторы среды
- •6. Генетические основы онтогенеза план
- •1. Онтогенез: основные понятия, дифференцировка и детерминация
- •2. Эпигеномная наследственность
- •Эпителия головастика:
- •3. Транскрипция и амплификация генов в оогенезе, их дифференциальная активность в онтогенезе
- •4. Роль генетических факторов в определении продолжительности жизни
- •7. Генетика популяций
- •7.1 Генетическая характеристика популяций план
- •1. Понятие и типы популяций
- •2. Генетическая характеристика популяций апомиктов
- •3. Генетическая структура популяции самоопылителей
- •4. Генетическая структура панмиктических популяций
- •5. Закон Харди-Вайнберга
- •7.2 Факторы генетической динамики популяций план
- •1. Основные факторы генетической динамики популяций
- •2. Генетический груз.
- •8. Генетика человека
- •8.1 Человек как объект генетических исследований план
- •1. Человек как объект генетических исследований. Задачи медицинской генетики
- •2. Основы медицинской генетики. Классификация наследственных болезней человека
- •3. Методы изучения генетики человека
- •4. Геном человека
- •8.2 Генотерапия план
- •1. Основные принципы и методология генотерапии
- •2. Достижения, перспективы и проблемы генной терапии
- •9. Генетические основы селекции
- •9.1 Генетика как теоритическая основа селекции план
- •1. Селекция как наука
- •2. Исходный материал в селекции
- •3. Системы скрещиваний в селекции
- •4. Гетерозис
- •5. Методы отбора
- •6. Подбор
- •9.2 Основы селекции рыб план
- •1.Цели и задачи селекции рыб
- •2. Селекция карпа
- •Место дисциплины в системе подготовки специалиста
- •2 Цели и задачи учебной дисциплины
- •Требования к уровню освоения учебной дисциплины
- •Содержание учебного материала
- •Тема 1 введение. История развития генетики
- •Тема 2 материальные основы наследственности
- •Тема 3 закономерности наследования признаков
- •Тема 4 молекулярные основы наследственности
- •Тема 5 изменчивость
- •Тема 6 генетические основы онтогенеза
- •Тема 7 генетика популяций
- •Тема 8 генетика человека
- •Тема 9 генетические основы селекции
- •Учебно-методическая карта учебной дисциплины
- •Перечень основной и дополнительной литературы:
- •Перечень тестовых заданий
3. Трансформация
Трансформация бактерий – это перенос ДНК, изолированной из одних клеток, в другие.
При трансформации ДНК, выделенную из клеток одного штамма, поглощают клетки другого штамма – реципиента.
Трансформация возможна у целого ряда бактерий: Diplococcus, Hemophilus, Neisseria, Bacillus, а также у актиномицетов, цианобактерий и других, и она имеет общие закономерности. Лучше всего трансформация изучена у таких бактерий, как D. pneumoniae, В. subtilis, Н. influenzae.
Для того чтобы ДНК проникла в бактериальные клетки, они должны находиться в состоянии компетентности. Сначала ДНК связывается с поверхностью компетентных клеток. Обычно трансформирующая ДНК имеет молекулярную массу около 1×107 Д, что составляет около 0,5% бактериальной хромосомы. ДНК, связанная с компетентными клетками, расщепляется специальными нуклеазами до фрагментов с молекулярной массой 4-5×106 Д. После этого фрагменты ДНК проникают в клетку. Некоторые бактерии, в частности пневмококки, могут неспецифически поглощать ДНК из разных источников. В то же время, например, Hemophilus, поглощает только свою, гомологическую ДНК.
Фрагменты менее 5-105 Д в клетку не проникают.
После попадания в бактерию двуцепочечная ДНК превращается в одноцепочечную: одна нить ДНК деградирует. На заключительной стадии происходит интеграция одноцепочечного трансформирующего фрагмента с ДНК клетки-реципиента. При этом репликация не требуется, и включаемый фрагмент физически объединяется с ДНК реципиента. Весь процесс трансформации завершается в течение 10-30 мин. Частота трансформации разных бактерий составляет около 1%.
Для некоторых бактерий показана трансформация в естественных условиях, например, в организме инфицированного животного – для Diplococcus pneumoniae, а также в условиях культуры – для Bacillus sublilis. Это означает, что трансформация – не экзотический прием генетического анализа, а естественный биологический процесс.
В то же время в последние годы в связи с развитием генной инженерии широко применяется плазмидная трансформация, которая заключается во введении в клетки бактерий, а также эукариот генов, интегрированных в естественные или искусственные плазмиды.
4. Трансдукция. Использование бактериофагов для картирования хромосомы бактерий
Трансдукцией называют перенос генов из одних бактериальных клеток в другие при помощи бактериофага. Это явление в 1951 г. открыл Н. Зиндер. Перед рассмотрением трансдукции важно изучить взаимоотношения между бактериями и бактериофагами.
Вирулентные и умеренные бактериофаги. Бактериофаги, или вирусы бактерий, делят на две категории: вирулентные и умеренные. Вирулентный бактериофаг, проникая в клетку, вызывает литическую реакцию, т.е. размножается и лизирует бактерию. Умеренные бактериофаги могут вызывать как литическую, так и лизогенную реакцию. В последнем случае инфицирующий фаг переходит в состояние профага, который воспроизводится синхронно с хромосомой бактерии. Бактерии, несущие профаг, называют лизогенными. Лизогенные бактерии приобретают иммунитет, т.е. устойчивость к дополнительному заражению тем же бактериофагом, который их лизогенизировал.
Лизогенное состояние устойчиво воспроизводится. Профаг при этом теряется с частотой около 1 на 105-106 клеточных делений. В лизогенных культурах может происходить индукция бактериофага, в результате чего наблюдается массовый лизис бактерий. Такое явление происходит спонтанно и стимулируется целым рядом агентов, повреждающих ДНК: ультрафиолетовыми и рентгеновскими лучами, алкилирующими соединениями, органическими перекисями и т.д.
Виды трансдукции:
1. Общая трансдукция. Трансдукцию осуществляют умеренные бактериофаги. К их числу относится фаг Р22, при помощи которого Н. Зиндер впервые обнаружил трансдукцию у Salmonella typhimurium.
Два штамма этой бактерии, нуждавшиеся в аминокислотах (один – phe trp tyr ++, другой – + + met his), высевали в смешанной культуре на минимальную среду. В результате появились прототрофные колонии с частотой около 1×10-4. Как видно, логика эксперимента была та же, что и при поисках конъюгации у Е. coli. Иными оказались результаты выращивания двух названных штаммов S. typhimurium в разных отростках U-образной трубки, разделенных бактериальным фильтром. Рекомбинанты были получены и в этом случае. Следовательно, для их образования не нужен контакт между клетками, как при конъюгации.
Перенос генов при общей трансдукции может привести к двум различным состояниям трансдуктантов. В одних случаях привнесенный ген наследуется стабильно, поскольку интегрирует с хромосомой реципиента. Это полная трансдукция. В других случаях при абортивной трансдукции внесенный фагом фрагмент генома не реплицируется и передается по одной линии при размножении трансдуктанта, т.е. из двух клеток – потомков каждого деления – лишь одна получает трансдуцированный ген. Так можно трансдуцировать ген, определяющий наличие жгутика у S. typhimurium. В этом случае во всем клоне – потомстве трансдуктанта – жгутик, а, следовательно, подвижность сохраняет только одна клетка. Абортивная трансдукция происходит чаще, чем полная, иногда в 10 раз.
2. Специфическая трансдукция отличается от неспецифической тем, что бактериофаг может переносить только определенные гены, как это характерно для фага к Е. coli, который может трансдуцировать только гены локуса gal, ответственного за усвоение галактозы, и bio – гены синтеза биотина. Умеренный бактериофаг при лизогенизации Е. coli интегрирует в ее хромосому на участке между локусами gal и bio. Это было показано в конъюгационных скрещиваниях лизогенных Hfr и нелизогенных F--бактерий. Gal+-трансдуктанты возникают обычно с частотой 1×10-5-10-6 и, как правило, генетически нестабильны. Они выщепляют клетки Gal-1 частотой около 2×10-3 на клеточное деление. Это явление объясняется тем, что трансдуктанты Gal+ частично гетерозиготны gal/gal+ т.е. несут дополнительный фрагмент gal+ вместе с участком gal реципиента. Такое состояние называется гетерогенотой.
При облучении гетерогенот УФ-лучами удалось получить фаголизаты, способные к трансдукции с очень высокой частотой.
Почти половина всех частиц λ могла передавать признак Gal+ при трансдукции. Изучение фагов из таких лизатов, названных HFT (от англ. high frequency transduction), показало, что гены gal переносят так называемые дефектные фаги λ, т.е. такие, которые, лизогенизируя бактерии, сообщают им устойчивость к суперинфекции λ, но в дальнейшем лизогенные бактерии не способны продуцировать инфекционные частицы бактериофага. Дефектные трансдуцирующие частицы λ, обозначаемые к gal, не образуют стерильных пятен на газоне Е. coli. Они не могут самостоятельно размножаться. Для этого им требуется фаг – помощник: нормальный, не способный к трансдукции.
