- •Пояснительная записка
- •Конспект лекций содержание
- •1. Введение в генетику план
- •1. Предмет генетики, понятие о наследственности и изменчивости
- •1.2. Этапы развития и разделы генетики
- •1.3. Генетика в системе других наук. Достижения генетики, внедренные в практику человеческой деятельности
- •1.4. Методы генетики
- •2. Структурно-функциональная организация хромосом план
- •1. Строение хромосом
- •2. Упаковка днк в разных ядерных структурах, в том числе в хромосомах
- •3. Кариотип и идиограмма
- •3. Закономерности наследования признаков
- •3.1 Моногибридное скрещивание план
- •1. I и II законы Менделя. Условия выполнения второго закона Менделя
- •2. Фенотип и генотип
- •3. Анализирующее, возвратное, реципрокные скрещивания
- •3.2 Дигибридное и тригибридное скрещивание план
- •1. Дигибридное скрещивание
- •2. Тригибридное и полигибридное скрещивание
- •3. Типы взаимодействия неаллельных генов
- •3.3 Генетика пола план
- •1. Типы определения пола
- •2. Наследование признаков, сцепленных с полом.
- •3.4 Сцепление генов и кроссинговер план
- •1.Генетическое доказательство сцепленного наследования
- •2. Кроссинговер. Типы кроссинговера. Факторы, влияющие на кроссинговер
- •3. Генетические карты хромосом. Трехфакторное скрещивание
- •4. Понятие об интерференции и коинциденции
- •3.5 Рекомбинация у бактерий и вирусов план
- •1. Микроорганизмы как объект генетических исследований
- •2. Организация генетического аппарата у бактерий и вирусов
- •3. Трансформация
- •4. Трансдукция. Использование бактериофагов для картирования хромосомы бактерий
- •5. Конъюгация бактерий
- •4. Молекулярные механизмы генетических процессов
- •4.1 Генетическая роль днк и рнк план
- •1. Генетическая роль днк и рнк, ее доказательство
- •2. Репликация
- •3. Полуконсервативный способ репликации. Опыты Мезельсона и Сталя
- •4. Ферменты репликации, схема репликационной вилки, особенности репликации днк у про- и эукариот
- •4.2 Репарация днк план
- •1. Основные типы репарации днк
- •2 .Рестрикция-модификация днк
- •4.3 Эволюция представлений о структуре и функциях гена план
- •1. Хромосомная теория гена
- •2. Функциональный и рекомбинационный тесты на аллелизм
- •3. Центровая теория гена
- •4. Псевдоаллелизм
- •4.4 Структура и функции гена план
- •1. Тонкая структура гена. Работы с. Бензера
- •2. Экзонно-интронная структура гена.
- •3. Сплайсинг и альтернативный сплайсинг
- •4.5 Транскрипция план
- •1. Этапы биосинтеза рнк
- •2. Транскрипция
- •3. Организация промоторных и терминаторных участков у про- и эукариот
- •4. Процессинг первичных транскриптов у эукариот
- •5. Обратная транскрипция
- •4.6 Генетический код и трансляция план
- •1. Генетический код
- •2. Составляющие элементы и стадии трансляции
- •5. Изменчивость и мутагенез:
- •5.1 Наследственная и ненаследственная изменчивость. Мутации и их виды план
- •1. Классификация изменчивости. Ненаследственная изменчивость и ее типы
- •2. Наследственная изменчивость и ее типы
- •3. Мутагены и метагенез
- •4. Классификация мутаций на хромосомном уровне
- •5.2 Молекулярные механизмы мутагенеза, генные и хромосомные мутации план
- •1. Классификация генных мутаций
- •2. Причины генных мутаций
- •3. Значимость генных мутаций для жизнедеятельности организма
- •4. Хромосомные мутации. Классификация хромосомных мутаций
- •5. Цитологические и генетические методы обнаружения хромосомных мутаций
- •6. Значение хромосомных перестроек в эволюции
- •5.3 Геномные мутации план
- •1. Классификация, механизмы возникновения геномных мутаций
- •2. Жизнеспособность и плодовитость полиплоидных и анеуплоидных форм.
- •Искусственное получение полиплоидов
- •5.4 Спонтанный и индуцированный мутагенез план
- •1. Закон н.И. Вавилова о гомологических рядах в наследственной изменчивости
- •2. Спонтанные и индуцированные мутации
- •3.Мутагенные факторы среды
- •6. Генетические основы онтогенеза план
- •1. Онтогенез: основные понятия, дифференцировка и детерминация
- •2. Эпигеномная наследственность
- •Эпителия головастика:
- •3. Транскрипция и амплификация генов в оогенезе, их дифференциальная активность в онтогенезе
- •4. Роль генетических факторов в определении продолжительности жизни
- •7. Генетика популяций
- •7.1 Генетическая характеристика популяций план
- •1. Понятие и типы популяций
- •2. Генетическая характеристика популяций апомиктов
- •3. Генетическая структура популяции самоопылителей
- •4. Генетическая структура панмиктических популяций
- •5. Закон Харди-Вайнберга
- •7.2 Факторы генетической динамики популяций план
- •1. Основные факторы генетической динамики популяций
- •2. Генетический груз.
- •8. Генетика человека
- •8.1 Человек как объект генетических исследований план
- •1. Человек как объект генетических исследований. Задачи медицинской генетики
- •2. Основы медицинской генетики. Классификация наследственных болезней человека
- •3. Методы изучения генетики человека
- •4. Геном человека
- •8.2 Генотерапия план
- •1. Основные принципы и методология генотерапии
- •2. Достижения, перспективы и проблемы генной терапии
- •9. Генетические основы селекции
- •9.1 Генетика как теоритическая основа селекции план
- •1. Селекция как наука
- •2. Исходный материал в селекции
- •3. Системы скрещиваний в селекции
- •4. Гетерозис
- •5. Методы отбора
- •6. Подбор
- •9.2 Основы селекции рыб план
- •1.Цели и задачи селекции рыб
- •2. Селекция карпа
- •Место дисциплины в системе подготовки специалиста
- •2 Цели и задачи учебной дисциплины
- •Требования к уровню освоения учебной дисциплины
- •Содержание учебного материала
- •Тема 1 введение. История развития генетики
- •Тема 2 материальные основы наследственности
- •Тема 3 закономерности наследования признаков
- •Тема 4 молекулярные основы наследственности
- •Тема 5 изменчивость
- •Тема 6 генетические основы онтогенеза
- •Тема 7 генетика популяций
- •Тема 8 генетика человека
- •Тема 9 генетические основы селекции
- •Учебно-методическая карта учебной дисциплины
- •Перечень основной и дополнительной литературы:
- •Перечень тестовых заданий
2. Кроссинговер. Типы кроссинговера. Факторы, влияющие на кроссинговер
Важнейшей заслугой Т. Моргана явилось то, что он первым связал перекомбинацию генов находящихся на хромосоме генов с физическим обменом участками гомологичных хромосом – кроссинговером.
Кроссинговер – это обмен гомологичными участками между гомологичными хромосомами (хроматидами) в ходе профазы I мейоза.
Для обозначения частоты кроссинговера была предложена мерная единица – морганида (в честь Т. Моргана), равная 1% кроссинговера (в современном обозначении – это 1см).
Т. Морган допускал, что в кроссинговере могут одновременно участвовать несколько хроматид, в зависимости от этого обмены бывают двух-, трех- и четыреххроматидные (рисунок 4). Участие в кроссинговере той или иной хроматиды из пары гомологических хромосом является случайным.
Рисунок 4 – Типы хроматидных обменов
Перекресты между хроматидами гомологических хромосом может происходить одновременно в нескольких точках (рисунок 5). Кроссинговер бывает одиночным, двойным, тройным и множественным. В зависимости от того в скольких местах он происходит.
Рисунок 5 – Типы кроссинговера
Неравный кроссинговер – кроссинговер, в результате которого образуются сестринские кроссоверные хроматиды, различающиеся по количеству заключенного в них генетического материала.
При неравном кроссинговере наблюдается разрывы в несимметричных точках, и хроматиды обмениватся неравными участками (рисунок 6).
Впервые это явление было изучено А. Стертевантом в 1925 г. на примере гена Bar (В – полосковидные глаза), локализованного в Х-хромосоме D. melanogaster.
Рисунок 6 – Схема кроссинговера: А – норма; В – неравный кроссинговер с образованием хромосом с дупликацией и делецией соответственно
Неравный кроссинговер связан с дупликацией какого-либо участка в одном из гомологов и с утратой его в другом гомологе. Обнаружено, что ген В может присутствовать в виде тандемных, т.е. следующих друг за другом, повторов, состоящих из двух и даже трех копий. Цитологический анализ подтвердил предположение о том, что неравный кроссинговер может вести к тандемным дупликациям. В области, соответствующей локализации гена В, на препаратах политенных хромосом отмечено увеличение числа дисков, пропорциональное дозе гена. Предполагается, что в эволюции неравный кроссинговер стимулирует создание тандемных дупликаций различных последовательностей и использование их в качестве сырого генетического материала для формирования новых генов и новых регуляционных систем.
В редких случаях кроссинговер может происходить в ходе обычного митотического цикла в соматических клетках. В связи с этим он получил название митотического (соматического) кроссинговера. Митотический кроссинговер – редкое явление, которое отрыто К. Штерном в 1936 г. при исследовании самок дрозофил, гетерозиготных по рецессивным мутациям двух локусов Х-хромосомы – y (yellow) – желтое тело и sn (singed) опаленные щетинки (рисунок 7). Одна Х-хромосома несла в двух локусах аллели y sn+, а другая – у+ sn. Такие гетерозиготные мухи должны быть серого цвета и иметь нормальные щетинки. Однако, К. Штерн обнаружил на теле дрозофил одновременно по два рядом расположенных участка, один из которых имел желтую окраску (y) и нормальные щетинки (sn+), а другой – серую окраску (у+) и опаленные щетинки (sn).
Рисунок 7 – Схема митотического кроссинговера: а – без кроссинговера; б – с кроссинговером
Митотический кроссинговер, возникнувший у человека, может приводить к появлению клеток, экспрессирующих рецессивные проонкогенные мутации, предрасполагая к развитию рака. С другой стороны, клетка может стать и гомозиготным мутантом по гену-супрессору опухолевого роста, что приведет к тому же самому результату
Примером митотического кроссинговера является возникновение онкологического заболевания глаз у человека (рисунок 8) – в детском возрасте в результате мутации или кроссинговера в одном из ретинобластов (клеток эмбриональной ткани, которые в последствии образуют ретину – сетчатку глаза).
Рисунок 8 – Заболевание глаза – ретинобластома
Частота красинговера зависит от множества факторов как генетической так и негенетической природы:
гомо- и гетерогаметный пол. Это отмечено у мышей и кур. Так, например, у мышей частота кроссинговера снижена у самцов, а у кур – у самок. У дрозофилы и тутового шелкопряда, наоборот, кроссинговер имеет место только у гомогамного пола, а у гетерогамного (самцов дрозофилы и самок тутового шелкопряда) мейотический кроссинговер отсутствует как в половых хромосомах, так и в аутосомных;
структура хромосом. Снижают частоту хромосомные перестройки, вставки, выпадения участков, т.е все то, что снижает гомологию хромосом;
функциональное состояние организма. По мере увеличения возраста меняется степень спирализации хромосом и скорость клеточного деления;
состояние спирализации хромосом. Усиление спирализации сокращает расстояние между генами и увеличивает силу сцепления между ними;
экзогенные факторы: воздействие температуры, ионизирующей радиации и концентрированных растворов солей, химические мутагены, лекарства и гормоны обычно повышают частоту кроссинговера.
Биологическое значение кроссинговера чрезвычайно велико, поскольку генетическая рекомбинация позволяет создавать новые, ранее не существовавшие комбинации генов и тем самым повышать наследственную изменчивость, которая дает широкие возможности адаптации организма в различных условиях среды.
