
- •краткий курс лекций
- •1.1 ПРЕДМЕТ И МЕТОД НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ
- •1.2 Основные задачи курса
- •2. СПОСОБЫ ПРОЕЦИРОВАНИЯ
- •2.1 Центральное проецирование
- •2.2 Параллельное проецирование
- •2.3 Основные свойства параллельного проецирования
- •2.4 Прямоугольное проецирование
- •3. КОМПЛЕКСНЫЙ ЧЕРТЕЖ В ТРЕХ ВИДАХ
- •4. ПРЯМЫЕ ЧАСТНОГО ПОЛОЖЕНИЯ
- •4.1 Горизонталь
- •4.2 Фронталь
- •4.3 Профильная прямая
- •4.4 Вертикальная прямая (горизонтально-проецирующая)
- •4.7 Прямые наибольшего уклона плоскости и определение углов наклона плоскости к плоскостям уровня
- •5. ПРЯМЫЕ ОБЩЕГО ПОЛОЖЕНИЯ
- •6. ПЛОСКОСТИ ЧАСТНОГО ПОЛОЖЕНИЯ
- •6.1 Фронтальная плоскость Ф
- •6.2 Горизонтальная плоскость Г
- •6.3 Профильная плоскость П
- •6.4 Вертикальная плоскость
- •6.5 Наклонная плоскость
- •6.6 Плоскость перпендикулярная профильной плоскости проекций
- •7. ПЛОСКОСТИ ОБЩЕГО ПОЛОЖЕНИЯ
- •8. ВЗАИМОПРИНАДЛЕЖНОСТЬ ТОЧКИ, ПРЯМОЙ И ПЛОСКОСТИ
- •8.1 Взаимное положение точки и прямой
- •8.2 Точка и плоскость, прямая и плоскость
- •9. ДЕЛЕНИЕ ОТРЕЗКА В ЗАДАННОМ ОТНОШЕНИИ
- •10. ОПРЕДЕЛЕНИЕ ДЛИНЫ ОТРЕЗКА И УГЛОВ ЕГО НАКЛОНА К ПЛОСКОСТЯМ УРОВНЯ.
- •11. УСЛОВИЯ ВИДИМОСТИ НА КОМПЛЕКСНОМ ЧЕРТЕЖЕ
- •12. ЛОМАНЫЕ И КРИВЫЕ ЛИНИИ (ПЛОСКИЕ И ПРОСТРАНСТВЕННЫЕ). ВИНТОВАЯ ЛИНИЯ
- •13.1 Поверхности вращения
- •13.2 Линейчатые поверхности
- •13.3 Поверхности второго порядка
- •13.4 Винтовые поверхности
- •13.5 Циклические поверхности
- •13.6 Топографические поверхности
- •14. ВЗАИМОПРИНАДЛЕЖНОСТЬ ТОЧКИ И ПОВЕРХНОСТИ, ЛИНИИ И ПОВЕРХНОСТИ
- •14.1 Построение линий на гранных поверхностях
- •14.2 Построение линий на поверхностях вращения
- •АКСОНОМЕТРИЧЕСКИЕ ПРОЕКЦИИ
- •15. ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ
- •16. ПОКАЗАТЕЛИ ИСКАЖЕНИЯ ПО АКСОНОМЕТРИЧЕСКИМ ОСЯМ
- •17. ОРТОГОНАЛЬНЫЕ И КОСОУГОЛЬНЫЕ АКСОНОМЕТРИЧЕСКИЕ ПРОЕКЦИИ
- •17.1 Основное предложение аксонометрии
- •17.2 Свойства ортогональной аксонометрической проекции
- •18. СТАНДАРТНЫЕ АКСОНОМЕТРИЧЕСКИЕ ПРОЕКЦИИ
- •18.1 Прямоугольная изометрия
- •18.2 Прямоугольная диметрия
- •18.3 Косоугольная фронтальная диметрия
- •19. ВЗАИМНОЕ ПОЛОЖЕНИЕ ДВУХ ТОЧЕК
- •20. ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ТОЧКИ И ПРЯМОЙ
- •21. ВЗАИМНОЕ ПОЛОЖЕНИЕ ТОЧКИ И ПЛОСКОСТИ
- •21.1 Плоскость частного положения
- •21.2 Плоскость общего положения
- •22. ВЗАИМНОЕ ПОЛОЖЕНИЕ ДВУХ ПРЯМЫХ
- •22.1 Прямые профильного положения
- •23. ВЗАИМНОЕ ПОЛОЖЕНИЕ ПРЯМОЙ И ПЛОСКОСТИ
- •2. Пересечение прямой с плоскостью
- •24. ПЕРЕСЕЧЕНИЕ ПРЯМОЙ С ПОВЕРХНОСТЬЮ (МНОГОГРАННОЙ И КРИВОЙ)
- •24.1 Первый тип задач – прямая общего положения и проецирующая поверхность
- •24.2 Второй тип задач –прямая частного положения и поверхность общего положения
- •24.3 Третий тип задач - прямая и поверхность не имеют вырожденных видов
- •25. ВЗАИМНОЕ ПОЛОЖЕНИЕ ДВУХ ПЛОСКОСТЕЙ
- •25.1 Параллельность плоскостей
- •25.2 Пересечение плоскостей
- •26. ПЕРЕСЕЧЕНИЕ ПЛОСКОСТИ И ПОВЕРХНОСТИ, ОПРЕДЕЛЕНИЕ НАТУРЫ СЕЧЕНИЯ
- •26.1 Пересечение многогранника проецирующей плоскостью
- •26.2 Пересечение кривой поверхности плоскостью
- •26.2.1 Проецирующая плоскость
- •26.2.2 Заранее известен вид кривой (второй тип задач)
- •26.3. Пересечение поверхности плоскостью общего положения
- •28. ПЕРЕСЕЧЕНИЕ МНОГОГРАННИКОВ.
- •28. ПОСТРОЕНИЕ ЛИНИИ ПЕРЕСЕЧЕНИЯ МНОГОГРАННЫХ ПОВЕРХНОСТЕЙ
- •28.1 Первый тип задач - обе поверхности имеют вырожденный вид
- •28.2 Второй тип задач - одна из поверхностей имеет вырожденный вид.
- •29. ПЕРЕСЕЧЕНИЕ КРИВЫХ ПОВЕРХНОСТЕЙ
- •29.2 Третий тип задач - пересечение поверхностей общего положения
- •29.3 Частные случаи пересечения
- •30. СПОСОБ КОНЦЕНТРИЧЕСКИХ СФЕР
- •31. СПОСОБ ВСПОМОГАТЕЛЬНЫХ ЭКСЦЕНТРИЧЕСКИХ СФЕР
- •32. ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ ВТОРОГО ПОРЯДКА. ОСОБЫЕ СЛУЧАИ ПЕРЕСЕЧЕНИЯ
- •32.1 Круговые сечения поверхностей второго порядка
- •МЕТРИЧЕСКИЕ ЗАДАЧИ
- •34. ПЕРПЕНДИКУЛЯРНОСТЬ ПРЯМОЙ И ПЛОСКОСТИ, ПЛОСКОСТЕЙ
- •34.1 Перпендикулярность прямой и плоскости
- •34.2 Перпендикулярность плоскостей
- •35. ВЗАИМНАЯ ПЕРПЕНДИКУЛЯРНОСТЬ ПРЯМЫХ ОБЩЕГО ПОЛОЖЕНИЯ
- •36. ОПРЕДЕЛЕНИЕ НАТУРАЛЬНОЙ ВЕЛИЧИНЫ УГЛА
- •СПОСОБЫ ПРЕОБРАЗОВАНИЯ КОМПЛЕКСНОГО ЧЕРТЕЖА
- •37. ЦЕЛИ И ВОЗМОЖНОСТИ ПРЕОБРАЗОВАНИЯ ЧЕРТЕЖА
- •39. СПОСОБ ВРАЩЕНИЯ
- •40. ОБЩИЕ ПОНЯТИЯ О РАЗВЁРТЫВАНИИ ПОВЕРХНОСТЕЙ
- •41. РАЗВЁРТКИ ПИРАМИДЫ И КОНИЧЕСКОЙ ПОВЕРХНОСТИ
- •41.1 Развертка поверхности пирамиды
- •41.2 Развертка конической поверхности
- •42. ПОСТРОЕНИЕ РАЗВЕРТОК ПРИЗМАТИЧЕСКИХ И ЦИЛИНДРИЧЕСКИХ ПОВЕРХНОСТЕЙ

34. ПЕРПЕНДИКУЛЯРНОСТЬ ПРЯМОЙ И ПЛОСКОСТИ, ПЛОСКОСТЕЙ
34.1 Перпендикулярность прямой и плоскости
Если прямая перпендикулярна плоскости, то она перпендикулярна ко всякой прямой этой плоскости (рисунок 13-7а). На комплексном чертеже перпендикулярность будет сохраняться:
• на виде спереди только с фронталью (рисунок 13-7б);
Рисунок 13-7
• на виде сверху только с горизонталью этой плоскости.
Следовательно, если прямая n перпендикулярна плоскости, то на виде сверху она перпендикулярна к горизонтали (n h), а на виде спереди к фронтали (n f) этой плоскости.
Справедливо и обратное утверждение: если проекции пря-
мой перпендикулярны одноимённым проекциям соответствующих линий уровня, то такая .прямая перпендикулярна этой плоскости.
Если прямая перпендикулярна к плоскости частного положения, то прямой угол с вырожденной проекцией сохраняется. Перпендикулярная прямая в этом случае является прямой уровня и, следовательно, проецируется без искажения на том виде, где прямой угол сохраняется.
А
А
Рисунок 13-8
Рассмотрим примеры построения прямой, перпендикулярной к плоскости и плоскости, перпендикулярной к прямой.
Пример 4. Определить расстояние от т. А до наклонной плоскости Б (рисунок 13-8).
Расстояние от точки до плоскости изме-

ряется перпендикуляром, опущенным из точки на данную плоскость. На виде спереди опускаем перпендикуляр из т. А на плоскость
Б.
Это будет натуральная величина расстояния. На виде сверху прямая АК перпендикулярна линиям связи.
Пример 5. Определить расстояние от т. А до плоскости общего положения Б(a//b), (рисунок
13-9).
Проводим в плоскости Б произвольные горизонталь h и фронталь f.
Строим нормаль к плоскости Б, для чего на виде спереди проводим прямую n перпендикулярно к фронтали f, а на виде сверху перпендикулярно горизонтали h.
Определяем точку пересечения К прямой n с плоскостью Б, для чего строим на плоскости прямую t горизонтальноконкурирующую с прямой n.
Способом прямоугольного треугольника определяем натуральную величину перпендикуляра АК.
Пример 6. Через т.А провести плоскость Д, перпендикулярную прямой общего положения l (рисунок 13-10).
Плоскость Д задаем главными линиями этой плоскости -горизонталью и фронталью. Проводим их через т.А таким образом, чтобы они были перпендикулярны заданной прямой: горизонталь на виде сверху, фронталь - на виде спереди.
Полученная плоскость Д(h∩f) будет перпендикулярна прямой l.
Рисунок 13-10

34.2 Перпендикулярность плоскостей
Две плоскости перпендикулярны, если одна из них проходит через перпендикуляр к другой. Но через прямую линию (перпендикуляр) в пространстве можно провести множество плоскостей перпендикулярных данной.
Пример 7. Провести через т.А плоскость Б, перпендикулярную заданной плоскости Д(а//b), (рисунок 13-11).
Сначала проведем через т.А прямую n перпендикулярно плоскости Д, для чего на ней предварительно проводим горизонталь и фронталь.
Затем через т.А проводим произвольную прямую l.
Эти две прямые n и l задают одну из плоскостей перпендикулярных плоскости Д.
Пример 8. Определить, перпендикулярны ли данные плоскости Б(а//b)и Д(f∩h), (рисунок 13-12).
Из точки пересечения горизонтали h и фронтали f проводим прямую n перпендикулярно плоскости Б.
Проверим принадлежность прямой n плоскости Б. Если плоскости перпендику-
|
|
|
лярны, то нормаль n будет |
|
|
|
либо принадлежать, либо бу- |
|
|
|
дет параллельна плоскости Б. |
|
|
|
В нашем случае прямая n |
|
|
|
не принадлежит и не парал- |
|
|
|
лельна этой плоскости (о чем |
|
|
|
можно судить по расположе- |
|
|
|
нию проекций n и t на видах), |
|
|
|
следовательно плоскость Б не |
|
Рисунок 13-12 |
|
|
|
|
перпендикулярна плоскости Д. |
|
|
|
|
|
|
|
|
|

Пример 9. Через прямую l провести плоскость Д перпендикулярно плоскости Б (А, b) (рисунок 13-13).
На прямой l берем произвольную точку М и через неё проводим прямую n перпендикулярно плоскости Б. Пересекающиеся прямые l и n задают искомую плоскость.
Рисунок 13-13