
- •краткий курс лекций
- •1.1 ПРЕДМЕТ И МЕТОД НАЧЕРТАТЕЛЬНОЙ ГЕОМЕТРИИ
- •1.2 Основные задачи курса
- •2. СПОСОБЫ ПРОЕЦИРОВАНИЯ
- •2.1 Центральное проецирование
- •2.2 Параллельное проецирование
- •2.3 Основные свойства параллельного проецирования
- •2.4 Прямоугольное проецирование
- •3. КОМПЛЕКСНЫЙ ЧЕРТЕЖ В ТРЕХ ВИДАХ
- •4. ПРЯМЫЕ ЧАСТНОГО ПОЛОЖЕНИЯ
- •4.1 Горизонталь
- •4.2 Фронталь
- •4.3 Профильная прямая
- •4.4 Вертикальная прямая (горизонтально-проецирующая)
- •4.7 Прямые наибольшего уклона плоскости и определение углов наклона плоскости к плоскостям уровня
- •5. ПРЯМЫЕ ОБЩЕГО ПОЛОЖЕНИЯ
- •6. ПЛОСКОСТИ ЧАСТНОГО ПОЛОЖЕНИЯ
- •6.1 Фронтальная плоскость Ф
- •6.2 Горизонтальная плоскость Г
- •6.3 Профильная плоскость П
- •6.4 Вертикальная плоскость
- •6.5 Наклонная плоскость
- •6.6 Плоскость перпендикулярная профильной плоскости проекций
- •7. ПЛОСКОСТИ ОБЩЕГО ПОЛОЖЕНИЯ
- •8. ВЗАИМОПРИНАДЛЕЖНОСТЬ ТОЧКИ, ПРЯМОЙ И ПЛОСКОСТИ
- •8.1 Взаимное положение точки и прямой
- •8.2 Точка и плоскость, прямая и плоскость
- •9. ДЕЛЕНИЕ ОТРЕЗКА В ЗАДАННОМ ОТНОШЕНИИ
- •10. ОПРЕДЕЛЕНИЕ ДЛИНЫ ОТРЕЗКА И УГЛОВ ЕГО НАКЛОНА К ПЛОСКОСТЯМ УРОВНЯ.
- •11. УСЛОВИЯ ВИДИМОСТИ НА КОМПЛЕКСНОМ ЧЕРТЕЖЕ
- •12. ЛОМАНЫЕ И КРИВЫЕ ЛИНИИ (ПЛОСКИЕ И ПРОСТРАНСТВЕННЫЕ). ВИНТОВАЯ ЛИНИЯ
- •13.1 Поверхности вращения
- •13.2 Линейчатые поверхности
- •13.3 Поверхности второго порядка
- •13.4 Винтовые поверхности
- •13.5 Циклические поверхности
- •13.6 Топографические поверхности
- •14. ВЗАИМОПРИНАДЛЕЖНОСТЬ ТОЧКИ И ПОВЕРХНОСТИ, ЛИНИИ И ПОВЕРХНОСТИ
- •14.1 Построение линий на гранных поверхностях
- •14.2 Построение линий на поверхностях вращения
- •АКСОНОМЕТРИЧЕСКИЕ ПРОЕКЦИИ
- •15. ОСНОВНЫЕ ПОНЯТИЯ И ОПРЕДЕЛЕНИЯ
- •16. ПОКАЗАТЕЛИ ИСКАЖЕНИЯ ПО АКСОНОМЕТРИЧЕСКИМ ОСЯМ
- •17. ОРТОГОНАЛЬНЫЕ И КОСОУГОЛЬНЫЕ АКСОНОМЕТРИЧЕСКИЕ ПРОЕКЦИИ
- •17.1 Основное предложение аксонометрии
- •17.2 Свойства ортогональной аксонометрической проекции
- •18. СТАНДАРТНЫЕ АКСОНОМЕТРИЧЕСКИЕ ПРОЕКЦИИ
- •18.1 Прямоугольная изометрия
- •18.2 Прямоугольная диметрия
- •18.3 Косоугольная фронтальная диметрия
- •19. ВЗАИМНОЕ ПОЛОЖЕНИЕ ДВУХ ТОЧЕК
- •20. ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ТОЧКИ И ПРЯМОЙ
- •21. ВЗАИМНОЕ ПОЛОЖЕНИЕ ТОЧКИ И ПЛОСКОСТИ
- •21.1 Плоскость частного положения
- •21.2 Плоскость общего положения
- •22. ВЗАИМНОЕ ПОЛОЖЕНИЕ ДВУХ ПРЯМЫХ
- •22.1 Прямые профильного положения
- •23. ВЗАИМНОЕ ПОЛОЖЕНИЕ ПРЯМОЙ И ПЛОСКОСТИ
- •2. Пересечение прямой с плоскостью
- •24. ПЕРЕСЕЧЕНИЕ ПРЯМОЙ С ПОВЕРХНОСТЬЮ (МНОГОГРАННОЙ И КРИВОЙ)
- •24.1 Первый тип задач – прямая общего положения и проецирующая поверхность
- •24.2 Второй тип задач –прямая частного положения и поверхность общего положения
- •24.3 Третий тип задач - прямая и поверхность не имеют вырожденных видов
- •25. ВЗАИМНОЕ ПОЛОЖЕНИЕ ДВУХ ПЛОСКОСТЕЙ
- •25.1 Параллельность плоскостей
- •25.2 Пересечение плоскостей
- •26. ПЕРЕСЕЧЕНИЕ ПЛОСКОСТИ И ПОВЕРХНОСТИ, ОПРЕДЕЛЕНИЕ НАТУРЫ СЕЧЕНИЯ
- •26.1 Пересечение многогранника проецирующей плоскостью
- •26.2 Пересечение кривой поверхности плоскостью
- •26.2.1 Проецирующая плоскость
- •26.2.2 Заранее известен вид кривой (второй тип задач)
- •26.3. Пересечение поверхности плоскостью общего положения
- •28. ПЕРЕСЕЧЕНИЕ МНОГОГРАННИКОВ.
- •28. ПОСТРОЕНИЕ ЛИНИИ ПЕРЕСЕЧЕНИЯ МНОГОГРАННЫХ ПОВЕРХНОСТЕЙ
- •28.1 Первый тип задач - обе поверхности имеют вырожденный вид
- •28.2 Второй тип задач - одна из поверхностей имеет вырожденный вид.
- •29. ПЕРЕСЕЧЕНИЕ КРИВЫХ ПОВЕРХНОСТЕЙ
- •29.2 Третий тип задач - пересечение поверхностей общего положения
- •29.3 Частные случаи пересечения
- •30. СПОСОБ КОНЦЕНТРИЧЕСКИХ СФЕР
- •31. СПОСОБ ВСПОМОГАТЕЛЬНЫХ ЭКСЦЕНТРИЧЕСКИХ СФЕР
- •32. ВЗАИМНОЕ ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ ВТОРОГО ПОРЯДКА. ОСОБЫЕ СЛУЧАИ ПЕРЕСЕЧЕНИЯ
- •32.1 Круговые сечения поверхностей второго порядка
- •МЕТРИЧЕСКИЕ ЗАДАЧИ
- •34. ПЕРПЕНДИКУЛЯРНОСТЬ ПРЯМОЙ И ПЛОСКОСТИ, ПЛОСКОСТЕЙ
- •34.1 Перпендикулярность прямой и плоскости
- •34.2 Перпендикулярность плоскостей
- •35. ВЗАИМНАЯ ПЕРПЕНДИКУЛЯРНОСТЬ ПРЯМЫХ ОБЩЕГО ПОЛОЖЕНИЯ
- •36. ОПРЕДЕЛЕНИЕ НАТУРАЛЬНОЙ ВЕЛИЧИНЫ УГЛА
- •СПОСОБЫ ПРЕОБРАЗОВАНИЯ КОМПЛЕКСНОГО ЧЕРТЕЖА
- •37. ЦЕЛИ И ВОЗМОЖНОСТИ ПРЕОБРАЗОВАНИЯ ЧЕРТЕЖА
- •39. СПОСОБ ВРАЩЕНИЯ
- •40. ОБЩИЕ ПОНЯТИЯ О РАЗВЁРТЫВАНИИ ПОВЕРХНОСТЕЙ
- •41. РАЗВЁРТКИ ПИРАМИДЫ И КОНИЧЕСКОЙ ПОВЕРХНОСТИ
- •41.1 Развертка поверхности пирамиды
- •41.2 Развертка конической поверхности
- •42. ПОСТРОЕНИЕ РАЗВЕРТОК ПРИЗМАТИЧЕСКИХ И ЦИЛИНДРИЧЕСКИХ ПОВЕРХНОСТЕЙ
ПЕРЕСЕЧЕНИЕ ПОВЕРХНОСТЕЙ
Линия пересечения двух поверхностей, называемая линией перехода, это такая линия, все точки которой одновременно принадлежат обеим поверхностям.
В общем случае она представляет собой пространственную кривую или ломаную линию (при пересечении многогранных поверхностей), которая может распадаться на две или более частей. В отдельных случаях эти части могут быть плоскими кривыми или многоугольниками.
28. ПОСТРОЕНИЕ ЛИНИИ ПЕРЕСЕЧЕНИЯ МНОГОГРАННЫХ ПОВЕРХНОСТЕЙ
Для построения линии пересечения таких поверхностей (ломаной линии) необходимо найти точки пересечения ребер одного многогранника с гранями второго, а затем наоборот - ребер второго с гранями первого, т.е. нужно многократно решить задачу на пересечение прямой с плоскостью. Полученные точки будут являться вершинами ломаной линии.
Следует помнить, что точки линии пересечения всегда будут находиться в пределах площади наложения проекций поверхностей.
Полученные точки соединяем между собой, учитывая при этом, что соединять можно только те точки, которые лежат в одной грани первого многогранника и, одновременно, в одной грани второго многогранника.
При соединении вершин ломаной линией необходимо сразу же решать вопрос видимости отрезков этой ломаной линии. Видимыми будут те отрезки, которые одновременно принадлежат видимым граням обоих многогранников.
Линию пересечения можно построить также путем многократного решения задачи на пересечение двух плоскостей, т.е. строить линию пересечения граней одного многогранника с гранями другого и наоборот. Этот способ требует большего количества построений, поэтому на практике используется реже.
Все задачи на пересечение двух поверхностей можно условно разделить на три типа:
1.Обе поверхности имеют вырожденный вид;
2.Одна из двух поверхностей имеет вырожденный вид;
3.Ни одна из поверхностей не имеет вырожденного вида.