
- •Траектория, длина пути, вектор перемещения в механике. Мгновенная скорость. Ускорение
- •1. Траектория, длина пути, вектор перемещения
- •Угловая скорость и угловое ускорение
- •Инерциальные системы отсчета. Законы Ньютона динамики материальной точки
- •2. Законы Ньютона динамики материальной точки
- •Внешние и внутренние силы. Центр масс. Закон сохранения импульса
- •1. Внешние и внутренние силы
- •3. Закон сохранения импульса
- •Силы трения. Закон трения скольжения. Сила трения качения
- •2. Закон трения скольжения
- •Движение тел переменной массы. Формула Циолковского
- •2. Формула Циолковского
- •Энергия как универсальная мера движения и взаимодействия. Работа переменной силы
- •1. Энергия как универсальная мера движения и взаимодействия
- •2. Работа сил
- •Кинетическая и потенциальная энергия механической системы
- •Консервативные и неконссрвативныс системы. Закон сохранения энергии
- •3. Закон сохранения энергии:
- •Закон сохранения энергии применительно к столкновениям упругих и неупругих тел
- •Момент инерции материальной точки. Кинетическая энергия вращения
- •2. Кинетическая энергия вращения (Kвр, Дж)
- •Главные (свободные) оси и моменты инерции твердого тела. Теорема Штейнера
- •1. Главные (свободные) оси и моменты инерции твердого тела
- •Момент силы относительно неподвижной точки и неподвижной оси. Основной закон динамики вращательного движения
- •1. Момент силы относительно неподвижной точки (m)
- •3. Основной закон динамики вращательного движения:
- •Момент импульса относительно неподвижной точки и неподвижной оси. Закон сохранения момента импульса
- •3. Закон сохранения момента импульса
- •Деформация твердого тела. Закон Гука. Потенциальная энергия деформации
- •Закон всемирного тяготения. Работа в поле тяжести. Космические скорости
- •2. Работа в поле тяжести:
- •3. Космические скорости
- •Стационарное движение несжимаемой жидкости. Уравнение непрерывности
- •1. Стационарное движение несжимаемой жидкости
- •Уравнение Бернулли. Формула Торричелли
- •1. Уравнение Бернулли
- •2. Формула Торричелли
- •Понятие вязкости. Формулы Стокса и Пуазейля для определения динамической вязкости
- •1. Понятие вязкости
- •Гармонические колебания и их характеристики
- •2. Характеристики гармонических колебаний
- •3. Примеры гармонических колебаний
- •4. Значение гармонических колебаний
- •Гармонический осциллятор. Пружинный, физический и математический маятники
- •Сложение гармонических колебаний одного направления и одинаковой частоты. Биения
- •1. Сложение гармонических колебаний одного направления и одинаковой частоты
- •С ложение взаимно перпендикулярных гармонических колебаний. Фигуры Лиссажу
- •2. Сложение взаимно перпендикулярных колебаний
- •4. Применение фигур Лиссажу
- •Дифференциальное уравнение свободных затухающих колебаний и его решение. Коэффициент затухания. Декремент и логарифмический декремент затухания. Добротность колебательной системы
- •1. Дифференциальное уравнение свободных затухающих колебаний
- •3. Коэффициент затухания (β)
- •Свободные затухающие колебания пружинного маятника. Апериодический процесс. Автоколебания
- •1. Свободные затухающие колебания пружинного маятника
- •2. Апериодический процесс
- •3. Автоколебания
- •Дифференциальное уравнение вынужденных колебаний и его решение. Амплитуда и фаза вынужденных колебаний. Понятие резонанса
- •1. Дифференциальное уравнение вынужденных колебаний
- •2. Решение дифференциального уравнения
- •3. Амплитуда вынужденных колебаний (a(ω))
- •4. Фаза вынужденных колебаний (φ(ω))
- •5. Понятие резонанса
- •Волновые процессы. Механизм образования механических волн в упругой среде. Продольные и поперечные волны. Гармонические волны
- •2. Механизм образования механических волн в упругой среде
- •3. Продольные и поперечные волны
- •Уравнение бегущей волны. Длина волны. Волновое число. Фазовая скорость. Волновое уравнение
- •Волновые пакеты. Принцип суперпозиции. Групповая скорость и ее связь с фазовой скоростью
- •Интерференция волн. Понятие когерентности
- •Формирование стоячих волн. Уравнение стоячей волны. Узлы и пучности
- •Звуковые волны. Закон Вебсра-Фехнера. Эффект Доплера
- •Статистический и термодинамический подходы в исследовании вещества. Термодинамические системы и их параметры. Понятие термодинамического процесса
- •1. Статистический подход (молекулярно-кинетическая теория - мкт)
- •2. Термодинамический подход
- •Идеальный газ. Законы идеального газа
- •Уравнение Клайперона-Мендслеева. Молярная газовая постоянная. Постоянная Больцмана. Число Лошмидта
- •1. Уравнение Клапейрона-Менделеева
- •Основное уравнение молекулярно-кинетической теории идеальных газов
- •Распределение Максвелла молекул идеального газа по скоростям, импульсам и энергии
- •Наиболее вероятная, средняя и средняя квадратичная скорости молекул идеального гата. Средняя энергия молекул идеального газа
- •Барометрическая формула. Распределение Больцмана
- •Среднее число столкновений и средняя длина свободного пробега молекул идеального газа
- •Явления переноса в термодинамически неравновесных системах. Теплопроводность, диффузия, вязкость
- •1. Теплопроводность:
- •2. Диффузия:
- •3. Вязкость (внутреннее трение):
- •Степени свободы. Закон Больцмана распределения энергии по степеням свободы молекул
- •Первое начало термодинамики. Работа газа при изменении объема
- •Теплоемкость. Уравнение Майера. Ограниченность классической теории теплопроводности идеальных газов
- •Первое начало термодинамики для изохорных, изобарических и изотермических процессов
- •Адиабатический процесс. Уравнение Пуассона. Сравнение изотермы и адиабаты. Работа газа при адиабатическом процессе. Понятие политропного процесса
- •Обратимые и необратимые процессы. Круговой процесс. Коэффициент полезного действия кругового процесса
- •Тепловые двигатели и холодильные машины. Цикл Карно. Коэффициент полезного действия цикла Карно для идеального газа
- •Энтропия. Принцип возрастания энтропии (второе начало термодинамики). Теорема Нернста
- •Реальные газы. Силы и потенциальная энергия межмолекулярного взаимодействия. Эффективный диаметр молекул. Уравнение Ван-дер-Ваальса
- •Изотермы Ван-дер-Ваальса
- •Внутренняя энергия реального газа
- •Эффект Джоуля-Томпсона
- •Свойства жидкостей. Поверхностное натяжение
- •Смачивание. Формула Лапласа
- •Капиллярные явления
- •Твердые моно- и поликристатличсские тела. Типы кристаллических твердых тел
- •1. Монокристаллические тела (монокристаллы):
- •2. Поликристаллические тела (поликристаллы):
- •Ионные кристаллы:
- •Атомные (ковалентные) кристаллы:
- •Металлические кристаллы:
- •Молекулярные кристаллы:
- •Дефекты в кристаллах. Типы дефектов. Дислокации
- •1. Точечные дефекты (нульмерные):
- •2. Линейные дефекты (одномерные):
- •3. Поверхностные дефекты (двумерные):
- •4. Объемные дефекты (трехмерные):
- •Теплоемкость твердых тел
- •Модель Эйнштейна (1907):
- •Модель Дебая (1912):
- •Фазовые переходы I и II второго рода. Диаграмма состояний. Уравнение Клайперона- Клаузиуса. Тройная точка
Кинетическая и потенциальная энергия механической системы
1. Кинетическая энергия (K) — это энергия, которой обладает тело вследствие своего движения. Она зависит от массы тела и его скорости.
K = (1/2)mv², где: m — масса тела; v — скорость тела.
Кинетическая энергия — скалярная величина. Она всегда неотрицательна. Кинетическая энергия системы материальных точек равна сумме кинетических энергий всех точек системы.
2. Потенциальная энергия (U) — это энергия, которой обладает тело вследствие своего положения в поле сил. Она зависит от взаимодействия тела с другими телами или полями.
Виды потенциальной энергии:
Потенциальная энергия гравитационного поля:
U = mgh, где: m — масса тела; g — ускорение свободного падения; h — высота тела над выбранным уровнем нулевой потенциальной энергии.
Потенциальная энергия упругой деформации:
U = (1/2)kx², где: k — жесткость пружины; x — деформация пружины.
Потенциальная энергия — скалярная величина. Она может быть как положительной, так и отрицательной. Потенциальная энергия определяется с точностью до постоянной величины (выбора уровня нулевой потенциальной энергии).
3. Механическая энергия (E) — это сумма кинетической и потенциальной энергий системы:
E = K + U
Закон сохранения механической энергии:
В замкнутой системе, на которую не действуют диссипативные силы (например, сила трения), механическая энергия сохраняется:
E = const
То есть, кинетическая энергия может переходить в потенциальную, и наоборот, но их сумма остается постоянной.
Понятия кинетической и потенциальной энергии широко используются в механике для описания движения тел, решения задач динамики и анализа различных физических явлений.
Основные моменты:
Кинетическая энергия связана с движением тела, а потенциальная — с его положением.
Механическая энергия — это сумма кинетической и потенциальной энергий.
В замкнутых системах механическая энергия сохраняется.
Консервативные и неконссрвативныс системы. Закон сохранения энергии
1. Консервативные системы — это система, в которой работа сил, действующих на тела системы, не зависит от формы траектории, а определяется только начальным и конечным положениями тел. В таких системах механическая энергия сохраняется.
Консервативные силы – это силы, работа которых не зависит от траектории (сила тяжести, сила упругости). В консервативной системе можно ввести понятие потенциальной энергии. Работа консервативных сил по замкнутой траектории равна нулю.
2. Неконсервативные системы — это система, в которой работа сил, действующих на тела системы, зависит от формы траектории. В таких системах механическая энергия не сохраняется.
Неконсервативные силы – это силы, работа которых зависит от траектории (сила трения, сила сопротивления воздуха). В неконсервативной системе нельзя ввести понятие потенциальной энергии. Работа неконсервативных сил может приводить к диссипации (рассеянию) механической энергии в другие формы энергии (например, тепловую).