
- •Траектория, длина пути, вектор перемещения в механике. Мгновенная скорость. Ускорение
- •1. Траектория, длина пути, вектор перемещения
- •Угловая скорость и угловое ускорение
- •Инерциальные системы отсчета. Законы Ньютона динамики материальной точки
- •2. Законы Ньютона динамики материальной точки
- •Внешние и внутренние силы. Центр масс. Закон сохранения импульса
- •1. Внешние и внутренние силы
- •3. Закон сохранения импульса
- •Силы трения. Закон трения скольжения. Сила трения качения
- •2. Закон трения скольжения
- •Движение тел переменной массы. Формула Циолковского
- •2. Формула Циолковского
- •Энергия как универсальная мера движения и взаимодействия. Работа переменной силы
- •1. Энергия как универсальная мера движения и взаимодействия
- •2. Работа сил
- •Кинетическая и потенциальная энергия механической системы
- •Консервативные и неконссрвативныс системы. Закон сохранения энергии
- •3. Закон сохранения энергии:
- •Закон сохранения энергии применительно к столкновениям упругих и неупругих тел
- •Момент инерции материальной точки. Кинетическая энергия вращения
- •2. Кинетическая энергия вращения (Kвр, Дж)
- •Главные (свободные) оси и моменты инерции твердого тела. Теорема Штейнера
- •1. Главные (свободные) оси и моменты инерции твердого тела
- •Момент силы относительно неподвижной точки и неподвижной оси. Основной закон динамики вращательного движения
- •1. Момент силы относительно неподвижной точки (m)
- •3. Основной закон динамики вращательного движения:
- •Момент импульса относительно неподвижной точки и неподвижной оси. Закон сохранения момента импульса
- •3. Закон сохранения момента импульса
- •Деформация твердого тела. Закон Гука. Потенциальная энергия деформации
- •Закон всемирного тяготения. Работа в поле тяжести. Космические скорости
- •2. Работа в поле тяжести:
- •3. Космические скорости
- •Стационарное движение несжимаемой жидкости. Уравнение непрерывности
- •1. Стационарное движение несжимаемой жидкости
- •Уравнение Бернулли. Формула Торричелли
- •1. Уравнение Бернулли
- •2. Формула Торричелли
- •Понятие вязкости. Формулы Стокса и Пуазейля для определения динамической вязкости
- •1. Понятие вязкости
- •Гармонические колебания и их характеристики
- •2. Характеристики гармонических колебаний
- •3. Примеры гармонических колебаний
- •4. Значение гармонических колебаний
- •Гармонический осциллятор. Пружинный, физический и математический маятники
- •Сложение гармонических колебаний одного направления и одинаковой частоты. Биения
- •1. Сложение гармонических колебаний одного направления и одинаковой частоты
- •С ложение взаимно перпендикулярных гармонических колебаний. Фигуры Лиссажу
- •2. Сложение взаимно перпендикулярных колебаний
- •4. Применение фигур Лиссажу
- •Дифференциальное уравнение свободных затухающих колебаний и его решение. Коэффициент затухания. Декремент и логарифмический декремент затухания. Добротность колебательной системы
- •1. Дифференциальное уравнение свободных затухающих колебаний
- •3. Коэффициент затухания (β)
- •Свободные затухающие колебания пружинного маятника. Апериодический процесс. Автоколебания
- •1. Свободные затухающие колебания пружинного маятника
- •2. Апериодический процесс
- •3. Автоколебания
- •Дифференциальное уравнение вынужденных колебаний и его решение. Амплитуда и фаза вынужденных колебаний. Понятие резонанса
- •1. Дифференциальное уравнение вынужденных колебаний
- •2. Решение дифференциального уравнения
- •3. Амплитуда вынужденных колебаний (a(ω))
- •4. Фаза вынужденных колебаний (φ(ω))
- •5. Понятие резонанса
- •Волновые процессы. Механизм образования механических волн в упругой среде. Продольные и поперечные волны. Гармонические волны
- •2. Механизм образования механических волн в упругой среде
- •3. Продольные и поперечные волны
- •Уравнение бегущей волны. Длина волны. Волновое число. Фазовая скорость. Волновое уравнение
- •Волновые пакеты. Принцип суперпозиции. Групповая скорость и ее связь с фазовой скоростью
- •Интерференция волн. Понятие когерентности
- •Формирование стоячих волн. Уравнение стоячей волны. Узлы и пучности
- •Звуковые волны. Закон Вебсра-Фехнера. Эффект Доплера
- •Статистический и термодинамический подходы в исследовании вещества. Термодинамические системы и их параметры. Понятие термодинамического процесса
- •1. Статистический подход (молекулярно-кинетическая теория - мкт)
- •2. Термодинамический подход
- •Идеальный газ. Законы идеального газа
- •Уравнение Клайперона-Мендслеева. Молярная газовая постоянная. Постоянная Больцмана. Число Лошмидта
- •1. Уравнение Клапейрона-Менделеева
- •Основное уравнение молекулярно-кинетической теории идеальных газов
- •Распределение Максвелла молекул идеального газа по скоростям, импульсам и энергии
- •Наиболее вероятная, средняя и средняя квадратичная скорости молекул идеального гата. Средняя энергия молекул идеального газа
- •Барометрическая формула. Распределение Больцмана
- •Среднее число столкновений и средняя длина свободного пробега молекул идеального газа
- •Явления переноса в термодинамически неравновесных системах. Теплопроводность, диффузия, вязкость
- •1. Теплопроводность:
- •2. Диффузия:
- •3. Вязкость (внутреннее трение):
- •Степени свободы. Закон Больцмана распределения энергии по степеням свободы молекул
- •Первое начало термодинамики. Работа газа при изменении объема
- •Теплоемкость. Уравнение Майера. Ограниченность классической теории теплопроводности идеальных газов
- •Первое начало термодинамики для изохорных, изобарических и изотермических процессов
- •Адиабатический процесс. Уравнение Пуассона. Сравнение изотермы и адиабаты. Работа газа при адиабатическом процессе. Понятие политропного процесса
- •Обратимые и необратимые процессы. Круговой процесс. Коэффициент полезного действия кругового процесса
- •Тепловые двигатели и холодильные машины. Цикл Карно. Коэффициент полезного действия цикла Карно для идеального газа
- •Энтропия. Принцип возрастания энтропии (второе начало термодинамики). Теорема Нернста
- •Реальные газы. Силы и потенциальная энергия межмолекулярного взаимодействия. Эффективный диаметр молекул. Уравнение Ван-дер-Ваальса
- •Изотермы Ван-дер-Ваальса
- •Внутренняя энергия реального газа
- •Эффект Джоуля-Томпсона
- •Свойства жидкостей. Поверхностное натяжение
- •Смачивание. Формула Лапласа
- •Капиллярные явления
- •Твердые моно- и поликристатличсские тела. Типы кристаллических твердых тел
- •1. Монокристаллические тела (монокристаллы):
- •2. Поликристаллические тела (поликристаллы):
- •Ионные кристаллы:
- •Атомные (ковалентные) кристаллы:
- •Металлические кристаллы:
- •Молекулярные кристаллы:
- •Дефекты в кристаллах. Типы дефектов. Дислокации
- •1. Точечные дефекты (нульмерные):
- •2. Линейные дефекты (одномерные):
- •3. Поверхностные дефекты (двумерные):
- •4. Объемные дефекты (трехмерные):
- •Теплоемкость твердых тел
- •Модель Эйнштейна (1907):
- •Модель Дебая (1912):
- •Фазовые переходы I и II второго рода. Диаграмма состояний. Уравнение Клайперона- Клаузиуса. Тройная точка
1. Монокристаллические тела (монокристаллы):
Представляют собой одиночные кристаллы, в которых кристаллическая решетка является непрерывной и единой по всему объему тела.
Атомы (или ионы, молекулы) расположены строго упорядоченно, образуя дальний порядок.
Часто имеют правильную геометрическую форму с плоскими гранями, прямыми ребрами и определенными углами, что является внешним проявлением их упорядоченной внутренней структуры. Однако при росте в стесненных условиях или при наличии дефектов идеальная форма может быть нарушена.
Обладают анизотропией – зависимостью физических свойств (механических, оптических, электрических, тепловых и др.) от направления внутри кристалла. Это связано с различной плотностью расположения атомов и силами взаимодействия в разных кристаллографических направлениях.
Примеры: кристаллы кварца, алмаза, кремния (используемые в электронике), слюды, монокристаллы металлов, выращенные в лабораторных условиях.
2. Поликристаллические тела (поликристаллы):
Состоят из множества мелких, беспорядочно ориентированных кристалликов (кристаллических зерен), сросшихся между собой.
Каждое зерно представляет собой маленький монокристалл со своей кристаллической решеткой, но ориентация этих решеток в разных зернах различна.
В пределах каждого отдельного зерна существует дальний порядок, но на границах между зернами кристаллическая решетка нарушается, и ориентация соседних зерен может быть произвольной. В масштабе всего поликристалла дальний порядок отсутствует.
Как правило, не имеют правильной внешней геометрической формы.
Обладают изотропией – их физические свойства одинаковы по всем направлениям. Это объясняется тем, что большое количество хаотично ориентированных кристаллических зерен усредняет анизотропию отдельных кристаллов.
Большинство металлических материалов (например, железо, медь, алюминий), керамика, многие сплавы, горные породы являются поликристаллами. Обычный кусок сахара также является поликристаллом.
Типы кристаллических твердых тел
Кристаллические твердые тела классифицируют по природе частиц, находящихся в узлах кристаллической решетки, и по характеру сил взаимодействия между ними. Выделяют четыре основных типа кристаллических твердых тел:
Ионные кристаллы:
В узлах кристаллической решетки находятся положительные и отрицательные ионы, связанные силами электростатического притяжения (ионной связью).
Характерные свойства: высокая твердость и тугоплавкость, хрупкость, низкая электропроводность в твердом состоянии (проводят ток в расплаве и растворе), растворимость в полярных растворителях (например, в воде).
Примеры: хлорид натрия (NaCl), оксид магния (MgO), фторид кальция (CaF₂).
Атомные (ковалентные) кристаллы:
В узлах кристаллической решетки находятся отдельные атомы, связанные прочными ковалентными связями, образуя гигантскую молекулу.
Характерные свойства: очень высокая твердость и тугоплавкость, нерастворимость в воде, обычно являются диэлектриками или полупроводниками.
Примеры: алмаз (C), графит (C), кремний (Si), германий (Ge), карбид кремния (SiC), кварц (SiO₂). (Алмаз и графит являются аллотропными модификациями углерода и имеют разную кристаллическую структуру и свойства).