
- •Траектория, длина пути, вектор перемещения в механике. Мгновенная скорость. Ускорение
- •1. Траектория, длина пути, вектор перемещения
- •Угловая скорость и угловое ускорение
- •Инерциальные системы отсчета. Законы Ньютона динамики материальной точки
- •2. Законы Ньютона динамики материальной точки
- •Внешние и внутренние силы. Центр масс. Закон сохранения импульса
- •1. Внешние и внутренние силы
- •3. Закон сохранения импульса
- •Силы трения. Закон трения скольжения. Сила трения качения
- •2. Закон трения скольжения
- •Движение тел переменной массы. Формула Циолковского
- •2. Формула Циолковского
- •Энергия как универсальная мера движения и взаимодействия. Работа переменной силы
- •1. Энергия как универсальная мера движения и взаимодействия
- •2. Работа сил
- •Кинетическая и потенциальная энергия механической системы
- •Консервативные и неконссрвативныс системы. Закон сохранения энергии
- •3. Закон сохранения энергии:
- •Закон сохранения энергии применительно к столкновениям упругих и неупругих тел
- •Момент инерции материальной точки. Кинетическая энергия вращения
- •2. Кинетическая энергия вращения (Kвр, Дж)
- •Главные (свободные) оси и моменты инерции твердого тела. Теорема Штейнера
- •1. Главные (свободные) оси и моменты инерции твердого тела
- •Момент силы относительно неподвижной точки и неподвижной оси. Основной закон динамики вращательного движения
- •1. Момент силы относительно неподвижной точки (m)
- •3. Основной закон динамики вращательного движения:
- •Момент импульса относительно неподвижной точки и неподвижной оси. Закон сохранения момента импульса
- •3. Закон сохранения момента импульса
- •Деформация твердого тела. Закон Гука. Потенциальная энергия деформации
- •Закон всемирного тяготения. Работа в поле тяжести. Космические скорости
- •2. Работа в поле тяжести:
- •3. Космические скорости
- •Стационарное движение несжимаемой жидкости. Уравнение непрерывности
- •1. Стационарное движение несжимаемой жидкости
- •Уравнение Бернулли. Формула Торричелли
- •1. Уравнение Бернулли
- •2. Формула Торричелли
- •Понятие вязкости. Формулы Стокса и Пуазейля для определения динамической вязкости
- •1. Понятие вязкости
- •Гармонические колебания и их характеристики
- •2. Характеристики гармонических колебаний
- •3. Примеры гармонических колебаний
- •4. Значение гармонических колебаний
- •Гармонический осциллятор. Пружинный, физический и математический маятники
- •Сложение гармонических колебаний одного направления и одинаковой частоты. Биения
- •1. Сложение гармонических колебаний одного направления и одинаковой частоты
- •С ложение взаимно перпендикулярных гармонических колебаний. Фигуры Лиссажу
- •2. Сложение взаимно перпендикулярных колебаний
- •4. Применение фигур Лиссажу
- •Дифференциальное уравнение свободных затухающих колебаний и его решение. Коэффициент затухания. Декремент и логарифмический декремент затухания. Добротность колебательной системы
- •1. Дифференциальное уравнение свободных затухающих колебаний
- •3. Коэффициент затухания (β)
- •Свободные затухающие колебания пружинного маятника. Апериодический процесс. Автоколебания
- •1. Свободные затухающие колебания пружинного маятника
- •2. Апериодический процесс
- •3. Автоколебания
- •Дифференциальное уравнение вынужденных колебаний и его решение. Амплитуда и фаза вынужденных колебаний. Понятие резонанса
- •1. Дифференциальное уравнение вынужденных колебаний
- •2. Решение дифференциального уравнения
- •3. Амплитуда вынужденных колебаний (a(ω))
- •4. Фаза вынужденных колебаний (φ(ω))
- •5. Понятие резонанса
- •Волновые процессы. Механизм образования механических волн в упругой среде. Продольные и поперечные волны. Гармонические волны
- •2. Механизм образования механических волн в упругой среде
- •3. Продольные и поперечные волны
- •Уравнение бегущей волны. Длина волны. Волновое число. Фазовая скорость. Волновое уравнение
- •Волновые пакеты. Принцип суперпозиции. Групповая скорость и ее связь с фазовой скоростью
- •Интерференция волн. Понятие когерентности
- •Формирование стоячих волн. Уравнение стоячей волны. Узлы и пучности
- •Звуковые волны. Закон Вебсра-Фехнера. Эффект Доплера
- •Статистический и термодинамический подходы в исследовании вещества. Термодинамические системы и их параметры. Понятие термодинамического процесса
- •1. Статистический подход (молекулярно-кинетическая теория - мкт)
- •2. Термодинамический подход
- •Идеальный газ. Законы идеального газа
- •Уравнение Клайперона-Мендслеева. Молярная газовая постоянная. Постоянная Больцмана. Число Лошмидта
- •1. Уравнение Клапейрона-Менделеева
- •Основное уравнение молекулярно-кинетической теории идеальных газов
- •Распределение Максвелла молекул идеального газа по скоростям, импульсам и энергии
- •Наиболее вероятная, средняя и средняя квадратичная скорости молекул идеального гата. Средняя энергия молекул идеального газа
- •Барометрическая формула. Распределение Больцмана
- •Среднее число столкновений и средняя длина свободного пробега молекул идеального газа
- •Явления переноса в термодинамически неравновесных системах. Теплопроводность, диффузия, вязкость
- •1. Теплопроводность:
- •2. Диффузия:
- •3. Вязкость (внутреннее трение):
- •Степени свободы. Закон Больцмана распределения энергии по степеням свободы молекул
- •Первое начало термодинамики. Работа газа при изменении объема
- •Теплоемкость. Уравнение Майера. Ограниченность классической теории теплопроводности идеальных газов
- •Первое начало термодинамики для изохорных, изобарических и изотермических процессов
- •Адиабатический процесс. Уравнение Пуассона. Сравнение изотермы и адиабаты. Работа газа при адиабатическом процессе. Понятие политропного процесса
- •Обратимые и необратимые процессы. Круговой процесс. Коэффициент полезного действия кругового процесса
- •Тепловые двигатели и холодильные машины. Цикл Карно. Коэффициент полезного действия цикла Карно для идеального газа
- •Энтропия. Принцип возрастания энтропии (второе начало термодинамики). Теорема Нернста
- •Реальные газы. Силы и потенциальная энергия межмолекулярного взаимодействия. Эффективный диаметр молекул. Уравнение Ван-дер-Ваальса
- •Изотермы Ван-дер-Ваальса
- •Внутренняя энергия реального газа
- •Эффект Джоуля-Томпсона
- •Свойства жидкостей. Поверхностное натяжение
- •Смачивание. Формула Лапласа
- •Капиллярные явления
- •Твердые моно- и поликристатличсские тела. Типы кристаллических твердых тел
- •1. Монокристаллические тела (монокристаллы):
- •2. Поликристаллические тела (поликристаллы):
- •Ионные кристаллы:
- •Атомные (ковалентные) кристаллы:
- •Металлические кристаллы:
- •Молекулярные кристаллы:
- •Дефекты в кристаллах. Типы дефектов. Дислокации
- •1. Точечные дефекты (нульмерные):
- •2. Линейные дефекты (одномерные):
- •3. Поверхностные дефекты (двумерные):
- •4. Объемные дефекты (трехмерные):
- •Теплоемкость твердых тел
- •Модель Эйнштейна (1907):
- •Модель Дебая (1912):
- •Фазовые переходы I и II второго рода. Диаграмма состояний. Уравнение Клайперона- Клаузиуса. Тройная точка
Траектория, длина пути, вектор перемещения в механике. Мгновенная скорость. Ускорение
1. Траектория, длина пути, вектор перемещения
Траектория — это линия, которую описывает тело при своем движении. Она может быть прямой, кривой, замкнутой или незамкнутой. Например, траектория движения Земли вокруг Солнца — эллипс.
Длина пути (S) — это скалярная величина, равная длине траектории, пройденной телом за определенный промежуток времени. Измеряется в метрах (м).
Вектор перемещения (Δr) — это вектор, соединяющий начальное и конечное положение тела. Он показывает, как изменилось положение тела в пространстве. Измеряется в метрах (м).
Важно:
Длина пути и модуль вектора перемещения могут совпадать только при прямолинейном движении в одном направлении.
В общем случае длина пути больше или равна модулю вектора перемещения.
2. Мгновенная скорость (v, м/с) — это векторная величина, характеризующая скорость тела в данный момент времени в данной точке траектории. Она равна первой производной радиус-вектора по времени:
v = dr/dt
Мгновенная скорость направлена по касательной к траектории движения в данной точке.
3. Ускорение (a, м/с²) — это векторная величина, характеризующая быстроту изменения скорости тела. Оно равно первой производной скорости по времени или второй производной радиус-вектора по времени:
a = dv/dt = d²r/dt²
Ускорение может быть направлено как по направлению скорости (при ускорении), так и против направления скорости (при замедлении).
Дополнительные моменты:
Если ускорение постоянно, движение называется равноускоренным (или равнозамедленным).
При криволинейном движении ускорение можно разложить на две составляющие: тангенциальное ускорение (изменяет модуль скорости) и нормальное ускорение (изменяет направление скорости).
Тангенциальное ускорение (aτ):
Это составляющая ускорения, которая направлена по касательной к траектории движения. Она отвечает за изменение модуля скорости тела. Если тангенциальное ускорение направлено в ту же сторону, что и скорость, то тело ускоряется; если в противоположную — замедляется.
aτ = dv/dt, где v - модуль скорости.
Нормальное (центростремительное) ускорение (an):
Это составляющая ускорения, которая направлена к центру кривизны траектории. Она отвечает за изменение направления скорости тела. Нормальное ускорение всегда присутствует при криволинейном движении, даже если модуль скорости не меняется (например, при равномерном движении по окружности).
an = v²/R, где v — модуль скорости, R — радиус кривизны траектории.
Полное ускорение (a) тела при криволинейном движении является векторной суммой тангенциального и нормального ускорений:
a = aτ + an
Модуль полного ускорения можно найти по теореме Пифагора:
|a| = √(aτ² + an²)
Пример
Представьте себе автомобиль, движущийся по изогнутой дороге.
Тангенциальное ускорение будет отвечать за то, разгоняется или замедляется автомобиль.
Нормальное ускорение будет отвечать за то, что автомобиль поворачивает, то есть меняет направление своего движения.
Важные моменты
При прямолинейном движении нормальное ускорение равно нулю, и полное ускорение совпадает с тангенциальным.
При равномерном движении по окружности тангенциальное ускорение равно нулю, и полное ускорение совпадает с нормальным (центростремительным).