Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Документ Microsoft Word.docx
Скачиваний:
256
Добавлен:
17.03.2015
Размер:
302.69 Кб
Скачать

Типы гибридизации

Существуют множество типов гибридизаций: sp, sp2, sp3, sp2d, sp3d, sp3d2, sp3d3, sp3d4. Но чаще всех остальных используются только sp, sp2, sp3.

sp-гибридизация - это гибридизация, в которой участвуют атомные орбитали одного s- и одного p-электронов.

В процессе гибридизации образуются 2 гибридные орбитали, которые ориентируются друг к другу под углом 180°.

sp2-гибридизация – гибридизация, в которой участвуют атомные орбитали одного s- и двух p-электронов.

В результате гибридизации образуются три гибридные sp2 орбитали, расположенные в одной плоскости под углом 120° друг к другу.

sp3-гибридизация – гибридизация, в которой участвуют атомные орбитали одного s- и трех p-электронов.

Четыре sp3-гибридные орбитали симметрично ориентированны в пространстве под углом 109°28'.

Билет № 10

Полярная и неполярная ковалентные связи

Различают две основные разновидности ковалентной связи: а) неполярную и б) полярную.

а) Ковалентная неполярная связь образуется между атомами неметалла одного и того лее химического элемента. Такую связь имеют простые вещества, например, О2; N2; C12. Можно привести схему образования молекулы водорода: (на схеме электроны обозначены точками).

б) Ковалентная полярная связь образуется между атомами различных неметаллов.

Схематично образование ковалентной полярной связи в молекуле НС1 можно изобразить так:

Общая электронная плотность оказывается смещенной в сторону хлора, в результате чего на атоме хлора возникает частичный отрицательный заряд , а на атоме водорода - частичный положительный. Таким образом, молекула становится полярной:

Эффективные заряды атомов в молекулах

Эффективный заряд атома, характеризует разность между числом электронов, принадлежащих данному атому в хим. соед., и числом электронов своб. атома. Для оценок Э. з. а. используют модели, в которых экспериментально определяемые величины представляют, как ф-ции точечных неполяризуемых зарядов, локализованных на атомах; напр., дипольный момент двухатомной молекулы рассматривают как произведение Э. з. а. на межатомное расстояние. В рамках подобных моделей Э. з. а. можно рассчитать, используя данные оптич. или рентгеновской спектроскопии, ЯМР и др. Однако, поскольку электронная плотность в хим. соед. делокализована и границ между атомами не существует, нельзя описать разл. характеристики соед. одним набором Э. з. а.; значения этого показателя, определенные разными эксперим. методами, могут не совпадать. Э. з. а. можно определить также на основе квантовохим. расчетов.  Э. з. а., определенные в рамках к.-л. одной модели или в однотипных расчетах, используют для корреляции с различными физ.-хим. характеристиками соед., установления реакц. центров в молекулах, оценки степени ионности хим. связи.

Ионная связь, как крайний случай поляризации ковалентной связи

Предельным случаем ковалентной полярной связи яв­ляется ионная связь. Если электроотрицательности атомов различаются очень сильно (например, атомов щелочных металлов и галогенов), то при их сближении валентные электроны одного атома полностью переходят на второй атом. В результате этого перехода оба атома становятся ионами и принимают электронную структуру ближайшего благородного газа. Например, при взаимо­действии атомов натрия и хлора, они превращаются в ионы Na+ и Сl-, между которыми возникает электроста­тическое притяжение. Ионная связь может быть описа­на в рамках методов ВС и МО, однако обычно ее рас­сматривают с помощью классических законов электро­статики.

Молекулы, в которых существует в чистом виде ион­ная связь, встречаются в парообразном состоянии ве­щества. Ионные кристаллы состоят из бесконечных рядов, чередующихся положительных и отрицательных ионов, связанных электростатическими силами. При растворении ионных кристаллов или их плавлении в раствор или расплав переходят положительные и отрицательные ионы.

Следует отметить, что ионные связи обладают большой прочностью, поэтому для разрушения ионных кристаллов необходимо затратить большую энергию. Этим объясня­ется тот факт, что ионные соединения имеют высокие тем­пературы плавления.

В отличие от ковалентной связи ионная не обладает свойствами насыщаемости и направленности. Причина этого состоит в том, что электрическое поле, создаваемое ионами, имеет сферическую симметрию и действует оди­наково на все ионы. Поэтому количество ионов, окру­жающих данный ион, и их пространственное расположе­ние определяются только величинами зарядов ионов и их размерами.

Билет № 11

Виды химической связи

Ионная связь – частный случай ковалентной, когда образовавшаяся электронная пара полностью принадлежит более электроотрицательному атому, становящемуся анионом. Основой для выделения этой связи в отдельный тип служит то обстоятельство, что соединения с такой связью можно описывать в электростатическом приближении, считая ионную связь обусловленной притяжением положительных и отрицательных ионов. Взаимодействие ионов противоположного знака не зависит от направления, а кулоновские силы не обладают свойством насыщенности. Поэтому каждый ион в ионном соединении притягивает такое число ионов противоположного знака, чтобы образовалась кристаллическая решетка ионного типа. В ионном кристалле нет молекул. Каждый ион окружен определенным числом ионов другого знака (координационное число иона). Ионные пары могут существовать в газообразном состоянии в виде полярных молекул. В газообразном состоянии NaCl имеет дипольный момент ~3∙10–29 Кл∙м, что соответствует смещению 0,8 заряда электрона на длину связи 0,236 нм от Na к Cl, т. е. Na0,8+Cl0,8–.

Металлическая связь возникает в результате частичной делокализации валентных электронов, которые достаточно свободно движутся в решетке металлов, электростатически взаимодействуя с положительно заряженными ионами. Силы связи не локализованы и не направлены, а делокализированные электроны обусловливают высокую тепло- и электропроводность.

Водородная связь. Ее образование обусловлено тем, что в результате сильного смещения электронной пары к электроотрицательному атому атом водорода, обладающий эффективным положительным зарядом, может взаимодействовать с другим электроотрицательным атомом (F, O, N, реже Cl, Br, S). Энергия такого электростатического взаимодействия составляет 20–100 кДж∙моль–1. Водородные связи могут быть внутри- и межмолекулярными. Внутримолекулярная водородная связь образуется, например, в ацетилацетоне и сопровождается замыканием цикла.

Ковалентная связь – наиболее общий вид химической связи, возникающий за счет обобществления электронной пары посредством обменного механизма, когда каждый из взаимодействующих атомов поставляет по одному электрону, или по донорно-акцепторному механизму, если электронная пара передается в общее пользование одним атомом (донором) другому атому (акцептору).

Классический пример неполярной ковалентной связи (разность электроотрицательностей равна нулю) наблюдается у гомоядерных молекул: H–H, F–F. Энергия двухэлектронной двухцентровой связи лежит в пределах 200–2000 кДж∙моль–1.