
- •1 Основные понятия и определения курса.
- •2 Цели и задачи курса. Связь с другими дисциплинами.
- •Главная задача курса освоение методик расчета грунтовых оснований.
- •4 Грунтовые основания. Происхождение грунтов.
- •5 Составные части (компоненты) грунтов. Грунты представляют собой пористые материалы, поры которых могут быть полностью или частично заполнены водой. Составные части
- •6 Гранулометрический состав грунтов. Методы его определения и изображения.
- •7 Виды воды в грунтовом основание.
- •8 Воздух и органические вещества в грунте.
- •9 Понятие о текстуре и структуре грунтов.
- •10 Физические свойства грунтов и их характеристики.
- •11 Пределы Аттерберга
- •12 Классификация грунтов по гост.
- •14 Сжимаемость грунтов. Компрессионные испытания.
- •15 Компрессионные испытания. Основной закон уплотнения.
- •16 Сжимаемость массива грунта. 17 Испытание грунта штампом.
- •18 Полевые методы определения модуля деформации грунта.
- •19 Влияние условий сжатия на поведение грунта под нагрузкой.
- •20 Сопротивление грунта сдвигу. Основные понятия.
- •21 Основные понятия теории прочности грунта.
- •22 Предельное сопротивление грунтов сдвигу при прямом плоскостном срезе.
- •23 Закон Кулона для связанных и несвязанных грунтов.
- •24 Испытания по схеме трехосного сжатия.
- •25 Условия прочности несвязных связных грунтов ( испытания в стабилометре).
- •26 Полевые методы испытания на сдвиг.
- •27 Водопроницаемость грунтов. Законы движения воды в грунте
- •Закон Дарси Закон ламинарной фильтрации или закон Дарси (Дарси, 1885) записывается виде:
- •28 Эффективные и нейтральные давления (напряжения) в грунте.
- •29 Природа (физические причины) длительного протекания деформаций в грунте.
- •30 Особые свойства грунта.
- •31 Использование характеристик физических свойств грунтов для приближенной оценки их механических свойств.
- •32 Выбор расчетных значений характеристик грунта.
- •33 Напряжение в грунте от собственного веса.
- •34 Напряжение в грунте от сосредоточенной силы.
- •35 Напряжения в грунте от распределенной нагрузки.
- •Напряжения от действия внешней нагрузки под центром фундамента.
- •36 Метод угловых точек.
- •37 Напряжения в грунте от вертикальной равномерно распределенной полосовой нагрузки.
- •38 Распределение напряжений в грунте по подошве фундамента сооружения.
- •39 Распределение напряжений в грунте по подошве сооружений и конструкций конечной жесткости
- •Метод коэффициента постели
- •41 Определение начального критического давления.
- •42 Определение конечного критического давления
- •43 Расчет конечных осадок
- •Определение деформаций оснований (осадки) по методу послойного суммирования
- •Расчет осадок по методу эквивалентного слоя
- •♯ Виды нарушения откосов
- •♯ Метод круглоцилиндрических поверхностей скольжения
- •♯ Давление грунта на ограждающую поверхность
- •44 Алгоритм расчета осадки основания фундамента
- •45. Понятие о расчете осадок во времени
♯ Метод круглоцилиндрических поверхностей скольжения
Большое распространение на практике получил метод круглоцилиндрических поверхностей скольжения. Сущность этого метода заключается в отыскании круглоцилиндрической поверхности скольжения с центром в некоторой точке О, проходящей через подошву откоса, для которой коэффициент устойчивости будет минимальным (рис ).
Рис.
5.9.1. Схема к
расчету устойчивости откоса методом
круглоцилиндрической поверхности
скольжения
Расчет ведется для отсека, для чего оползающий клин ABC разбивается на п вертикальных отсеков. Делается предположение, что нормальные и касательные напряжения, действующие по поверхности скольжения, в пределах каждого из отсеков оползающего клина определяются весом данного отсека Qt и равны соответственно:
где Аi – площадь поверхности скольжения в пределах 1-го вертикального отсека, Аi = 1li ;
l – длина дуги скольжения в плоскости чертежа (см. рис. 5.6.1).
Препятствующее оползанию откоса сопротивление сдвигу по рассматриваемой поверхности в предельном состоянии τu=σ·tgφ+c
Устойчивость
откоса можно оценить отношением моментов
удерживающихМs,l
и сдвигающих
Ms,a
сил. Соответственно
коэффициент запаса устойчивости
определим по формуле
Момент
удерживающих сил относительноО
представляет
собой момент сил Qi.
Момент сдвигающих сил относительно точки О
♯ Давление грунта на ограждающую поверхность
Давление грунта на ограждающую поверхность зависит от многих факторов: способа и последовательности засыпки грунта; естественного и искусственного трамбования; физико-механических свойств грунта; случайных или систематических сотрясений грунта; осадок и перемещений стенки под действием собственного веса, давления грунта; типа сопряженных сооружений. Все это значительно осложняет задачу определения давления грунта. Существуют теории определения давления грунта, использующие предпосылки, позволяющие с разной степенью точности выполнять решения задачи. Отметим, что решение этой задачи выполняется в плоской постановке.
Различают следующие виды бокового давления грунта:
- давление покоя (E0), называемое также естественным (натуральным), действующее в том случае, когда стена (ограждающая поверхность) неподвижна или относительные перемещения грунта и конструкции малы (рис.;
Схема
давления покоя
- активное давление (Eа), возникающее при значительных перемещениях конструкции в направлении давления и образования плоскостей скольжения в грунте, соответствующих его предельному равновесию (рис. 5.10.2). ABC - основание призмы обрушения, высота призмы 1 м;
Рис. 5.10.2 Схема активного давления
- пассивное давление (Ер), появляющееся при значительных перемещениях конструкции в направлении, противоположном направлению давления и сопровождающееся началом «выпора грунта» (рис. 5.10.3). ABC— основание призмы выпирания, высота призмы 1 м;
Схема пассивного давления
- дополнительное реактивное давление (Еr), которое образуется при движении конструкции в сторону грунта (в направлении, противоположном давлению), но не вызывает «выпора грунта».
Наибольшей из этих нагрузок (для одного и того же сооружения) является пассивное давление, наименьшей - активное. Соотношение между рассмотренными силами выглядит так: Еа<Ео<Еr<ЕР