- •2. Суть корреляционного и регрессионного анализа. Основные задачи решаемые методами анализа
- •3. Поле корреляции
- •4. Линейная регрессия и корреляция, смысл и оценка параметров. Сопряженные регрессионные прямые
- •5. Метод наименьших квадратов (мнк). Обобщенный мнк
- •6. Свойства оценок мнк. Проверка качества уравнения регрессии.
- •7. Проверка значимости коэффициента корреляции и коэффициента детерминации
- •8. Оценка существенности параметров линейной регрессии и корреляции.
- •9. Интервалы прогноза по линейному уравнению регрессии. Проверка значимости оценок параметров регрессии
- •10 Влияние неучтенных факторов на коэффициент корреляции
- •11. Распределение коэффициентов регрессии и корреляции
- •12. Множественная регрессия.
- •13. Линейная модель множественной регрессии. Проверка линейности модели
- •14. Спецификация модели. Коэффициент множественной детерминации. Коэффициент частной детерминации. Коэффициент частной детерминации между объясняющими переменными
- •15. Отбор факторов при построении множественной регрессии
- •16. Мультиколлениарность
- •17. Выбор формы уравнения регрессии
- •18. Оценка параметров уравнения множественной регрессии.
- •19. Обобщенный метод наименьших квадратов
- •20. Частные уравнения регрессии
- •21. Множественная корреляция.
- •22. Частная корреляция.
- •23. Оценка надежности результатов множественной регрессии и корреляции.
- •24. Нелинейные модели регрессии. Множественная нелинейная регрессия
- •25. Логарифмические модели
- •26. Полулогарифмические модели
- •33. Метод максимального правдоподобия
- •34. Метод линеаризации
- •35. Коэффициент детерминации. Коэффициент конкордации
- •36. Функция правдоподобия в математической статистике - это совместное распределение выборки из параметрического распределения как функция параметра.
- •37. Метод Бокса-Кокса
- •38. Коэффициент ранговой корреляции Спирмена.
- •39. Коэффициенты эластичности
- •40. Фиктивные переменные
- •41. Проверка значимости для коэффициента корреляции
- •42. Проверка значимости для коэффициента детерминации.
- •43. Проверка линейной регрессии
- •44. Коэффициент детерминации при простой линейной регрессии.
- •45. Коэффициент множественной детерминации
- •46. Коэффициент частной детерминации
- •47. Коэффициент детерминации между объясняющими переменными
- •48. Стандартные ошибки оценок
7. Проверка значимости коэффициента корреляции и коэффициента детерминации
Коэффициент корреляции
В качестве меры тесноты взаимосвязи используется коэффициент корреляции:
r
=
=
,
(18)
где σx = , σy = .
Вычисление коэффициента корреляции по формуле (5) является трудоемкой операцией. Выполнив несложные преобразования, можно получить следующую формулу для расчета линейного коэффициента корреляции:
(19)
Линейный коэффициент корреляции может принимать любые значения в пределах от минус 1 до плюс 1. Чем ближе коэффициент корреляции по абсолютной величине к 1, тем теснее связь между признаками. Знак при линейном коэффициенте корреляции указывает на направление связи - прямой зависимости соответствует знак плюс, а обратной зависимости – знак минус.
Коэффициент детерминации
При анализе качества модели регрессии, в первую очередь, используется коэффициент детерминации, который определяется следующим образом:
,
(2.5)
где
- среднее значение зависимой переменной,
-
предсказанное (расчетное) значение
зависимой переменной.
Коэффициент детерминации показывает долю вариации результативного признака, находящегося под воздействием изучаемых факторов, т. е. определяет, какая доля вариации признака Y учтена в модели и обусловлена влиянием на него факторов.
Чем
ближе
к 1, тем выше качество модели.
Для проверки значимости модели
Для проверки значимости модели регрессии используется F-критерий Фишера. Если расчетное значение с 1= k и 2 = (n - k - 1) степенями свободы, где k – количество факторов, включенных в модель, больше табличного при заданном уровне значимости, то модель считается значимой.
(2.7)
В
качестве
меры точности
применяют несмещенную оценку дисперсии
остаточной компоненты, которая
представляет собой отношение суммы
квадратов уровней остаточной компоненты
к величине (n- k -1), где k – количество
факторов, включенных в модель. Квадратный
корень из этой величины (
)
называетсястандартной
ошибкой:
(2.8)
значимость отдельных коэффициентов регрессии проверяется по t-статистике путем проверки гипотезы о равенстве нулю j-го параметра уравнения (кроме свободного члена):
,
(2.9)
где
Saj
—
это стандартное (среднеквадратическое)
отклонение коэффициента уравнения
регрессии aj.
Величина
Saj
представляет собой квадратный корень
из произведения несмещенной оценки
дисперсии
иj -го
диагонального элемента матрицы,
обратной матрице системы нормальных
уравнений.
![]()
где
- диагональный элемент матрицы
.
Если расчетное значение t-критерия с (n - k - 1) степенями свободы превосходит его табличное значение при заданном уровне значимости, коэффициент регрессии считается значимым. В противном случае фактор, соответствующий этому коэффициенту, следует исключить из модели (при этом ее качество не ухудшится).
