Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
kira_shpory.doc
Скачиваний:
188
Добавлен:
17.03.2015
Размер:
9.12 Mб
Скачать

7. Проверка значимости коэффициента корреляции и коэффициента детерминации

Коэффициент корреляции

В качестве меры тесноты взаимосвязи используется коэффициент корреляции:

r = = , (18)

где σx = , σy = .

Вычисление коэффициента корреляции по формуле (5) является трудоемкой операцией. Выполнив несложные преобразования, можно получить следующую формулу для расчета линейного коэффициента корреляции:

(19)

Линейный коэффициент корреляции может принимать любые значения в пределах от минус 1 до плюс 1. Чем ближе коэффициент корреляции по абсолютной величине к 1, тем теснее связь между признаками. Знак при линейном коэффициенте корреляции указывает на направление связи - прямой зависимости соответствует знак плюс, а обратной зависимости – знак минус.

Коэффициент детерминации

При анализе качества модели регрессии, в первую очередь, используется коэффициент детерминации, который определяется следующим образом:

, (2.5)

где - среднее значение зависимой переменной,

- предсказанное (расчетное) значение зависимой переменной.

Коэффициент детерминации показывает долю вариации результативного признака, находя­щегося под воздействием изучаемых факторов, т. е. определяет, ка­кая доля вариации признака Y учтена в модели и обусловлена влия­нием на него факторов.

Чем ближе к 1, тем выше качество модели.

Для проверки значимости модели

Для проверки значимости модели регрессии используется F-критерий Фишера. Если расчетное значение с 1= k и 2 = (n - k - 1) степенями свободы, где k – количество факторов, включенных в модель, больше табличного при заданном уровне значимости, то модель считается значимой.

(2.7)

В качестве меры точности применяют несмещенную оценку дис­персии остаточной компоненты, которая представляет собой отно­шение суммы квадратов уровней остаточной компоненты к величи­не (n- k -1), где k – количество факторов, включенных в модель. Квадратный корень из этой величины () называетсястандартной ошибкой:

(2.8)

значимость отдельных коэффициентов регрессии проверяется по t-статистике пу­тем проверки гипотезы о равенстве нулю j-го параметра уравнения (кроме свободного члена):

, (2.9)

где Saj это стандартное (среднеквадратическое) отклонение коэффициента уравнения регрессии aj. Величина Saj представляет собой квадратный корень из произ­ведения несмещенной оценки дисперсии иj -го диагонального эле­мента матрицы, обратной матрице системы нормальных уравнений.

где - диагональный элемент матрицы.

Если расчетное значение t-критерия с (n - k - 1) степенями сво­боды превосходит его табличное значение при заданном уровне зна­чимости, коэффициент регрессии считается значимым. В противном случае фактор, соответствующий этому коэффициенту, следует ис­ключить из модели (при этом ее качество не ухудшится).

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]