Добавил:
Здесь собраны файлы для СФ и общие дисциплины других факультетов. Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Ответы на экзамен 2024 (6 в одном)

.pdf
Скачиваний:
4
Добавлен:
07.09.2025
Размер:
21.01 Mб
Скачать

Плацентация (14-15 сутки после оплодотворения);Роды (38-40 неделя после оплодотворения).

Действие неблагоприятных факторов среды в эти периоды развития приводит к порокам развития данных систем.

Тератогенез - это возникновение пороков развития под влиянием факторов внешней среды (тератогенных факторов). Тератогенные факторы включают лекарственные средства, наркотики и многие другие вещества.

Канцерогенез – это процесс появления злокачественной клетки.

Пороки развития (синоним аномалии развития) — собирательный термин, обозначающий отклонения от нормального строения организма вследствие нарушения внутриутробного или постнатального (реже) развития.

Наибольшее значение из пороков развития имеют пороки врожденные, формирующиеся во внутриутробном периоде. Под термином «врожденные пороки» следует понимать стойкие морфологические изменения, выходящие за пределы вариации строения нормального организма.

Эти изменения вызывают нарушения соответствующих функций. Под аномалиями развития и понимают только такие пороки, при которых анатомические изменения не приводят к существенному нарушению функций, например деформации ушных раковин, не обезображивающие лица больного и существенно не отражающиеся на восприятии звуков. Грубые пороки развития, при которых обезображивается внешний облик ребенка, нередко называют уродствами.

ПРИЧИНЫ:

1) эндогенные (внутренние) факторы:

а) изменения наследственных структур (мутации); б) "перезревание" половых клеток; в) эндокринные заболевания; г) влияние возраста родителей; 2) экзогенные (внешние) факторы:

а) физические - радиационные, механические воздействия; б) химические - лекарственные препараты, химические вещества, применяемые в

промышленности и в быту, гипоксия, неполноценное питание, нарушения метаболизма; в) биологические - вирусные заболевания, протозойные инвазии, изоиммунизация.

Механизмы.

Формирование пороков происходит преимущественно в период эмбрионального морфогенеза (3-10-я неделя беременности) в результате нарушения процессов размножения, миграции, дифференциации и гибели клеток. Эти процессы происходят на внутриклеточном, экстраклеточном, тканевом, межтканевом, органном и межорганном уровнях. Нарушением размножения клеток объясняют гипоплазию и аплазию органов. Нарушение их миграции лежит в основе гетеротопий. Задержка дифференциации клеток обусловливает незрелость или персистирование эмбриональных структур, а ее полная остановка - аплазию органа или его части. Нарушение физиологической гибели клеток, как и нарушение механизмов адгезии ("склеивание" и срастание эмбриональных структур), лежат в основе многих дизрафий (например, спинномозговых грыж).

44) Врожденные аномалии и пороки развития. Определение, классификация, механизмы возникновения: гаметопатии, бластопатии, эмбриопатии, фетопатии, механизмы и причины их возникновения. Примеры.

Врожденный порок развития – это любое стойкое анатомическое отклонение в развитии органа или части тела, возникающее в результате воздействия тератогенных факторов или генетических мутаций (подробнее см. предыдущий вопрос).

Классификация.

Выделяют несколько групп пороков. В зависимости от времени воздействия вредных факторов и объекта поражения выделяют следующие формы пороков развития:

Гаметопатии - это патология гамет. К ним относятся любые повреждения яйцеклетки и сперматозоида во время ово- и сперматогенеза до оплодотворения. Понятие «гаметопатии» охватывает все виды повреждения мужской и женской гаметы: мутации генов и возникновение наследственных болезней и наследственных пороков развития, хромосомные аберрации с возникновением чаще не наследуемых хромосомных болезней, геномные мутации - изменения числа хромосом гаметы, обычно приводящие к самопроизвольному аборту или хромосомной болезни. Кроме того, необходимо учитывать, что тяжелые повреждения не только ядра, но и цитоплазмы гаметы становятся источником их гибели с развитием стерильности и бесплодия или спонтанных абортов и выкидышей. Из этого следует, что гаметопатии являются одним из факторов внутриутробной летальности, не поддающейся пока точной регистрации;

Бластопатия - патология бластоцисты, возникающая в период нидации и дробления в первые 15 дней от момента оплодотворения до выделения эмбрио- и трофобласта. Причиной бластопатии чаще всего являются хромосомные аберрации в сочетании с влияниями среды (эндокринные заболевания матери, гипоксия и др.). Патогенез зависит от вида поражения бластоцисты. Так, например, патогенез двойниковых уродств связан с появлением во время дробления двух или более самостоятельно растущих центров. Полагают, что если эти центры разобщены друг с другом, то развиваются два независимо растущих однояйцевых близнеца, нормальное развитие которых не следует относить к бластопатиям. Если центры роста расположены близко и имеют общую для двух близнецов промежуточную зону, то развиваются два сросшихся близнеца. В обоих случаях возможно развитие симметричных и асимметричных близнецов;

Эмбриопатия - патология эмбрионального периода с 16-го дня беременности до 75-го дня включительно, в течение которого заканчивается основной органогенез и формирование амниона и хориона. К основным видам эмбрионатий относят врожденные пороки развития (аплазии, гиперплазии и пр.);

Фетопатии - общее название болезней плода, возникающих с начала 4-го лунного месяца (11-я неделя) внутриутробного развития, проявляющихся аномалиями развития или врожденными болезнями, нередко заканчивающихся асфиксией плода и обусловливающих преждевременные роды (фетопатии вирусные – обусловленные вирусной инфекцией в организме матери; фетопатии туберкулезные – обусловленные заражением плода микобактериями туберкулеза и пр.);

45)Понятие о гомеостазе. Общие закономерности гомеостаза живых систем. Генетические, клеточные и системные основы гомеостатических реакций организма. Роль эндокринной и нервной систем в обеспечении гомеостаза адаптивных реакций.

Гомеостаз - способность организма поддерживать относительное постоянство внутренней среды (крови, лимфы, межклеточной жидкости).

Свойства:

Нестабильность системы: тестирует, каким образом ей лучше приспособиться;

Стремление к равновесию: вся внутренняя, структурная и функциональная организация систем способствует сохранению баланса;

Непредсказуемость: результирующий эффект от определённого действия зачастую может отличаться от того, который ожидался.

Уровни:

Клеточный уровень: установление гомеостаза клеточной среды обеспечивается мембранными системами, с которыми связаны биоэнергические процессы и регулирование транспорта веществ в клетку и из нее;

Генетический уровень: считывание генетической информации должно происходить без ошибок, это и обеспечивает нормальный гомеостаз (генный контроль тринадцати факторов свертывания крови, генный контроль гистосовместимости тканей и органов, позволяющий возможность трансплантации);

Системный уровень: обеспечивается взаимодействием важнейших регуляторных систем: нервной, эндокринной и иммунной.

Роль эндокринной системы: гормоны оказывают влияние на обменные процессы, обеспечивающие гомеостаз. Для сохранения гомеостаза необходимо уравновешение функциональной активности железы с концентрацией гормона, находящегося в циркулирующей крови.

Роль нервной системы: быстрое наступление ответной реакции, регуляция работы эндокринной системы, которая, в свою очередь, влияет на гомеостаз.

46) Регенерация как процесс поддержания целостности биологических систем. Физиологическая регенерация, ее значение. Фазы, механизмы регуляции. Значение регенерации для биологии и медицины.

Совокупность процессов, направленных на восстановление разрушаемых биологических структур называется регенерацией. Такой процесс характерен для всех уровней: обновление белков, составных частей органелл клетки, целых органелл и самих клеток. Физиологическая регенерация - это естественный процесс восстановления элементов организма в течении жизни. Например, восстановление эритроцитов и лейкоцитов, смена эпителия кожи, волос, замена молочных зубов на постоянные. На эти процессы влияют внешние и внутренние факторы.

Способы регенерации:

Эпиморфоз - или полная регенерация - восстановление раненой поверхности, достраивание части до целого (хвост у ящерицы, конечности у тритона);

Морфоллаксис - перестройка оставшейся части органа до целого, только меньших размеров. Для этого способа характерно не дополнение до целого, а перестройка нового из остатков старого (конечности у таракана);

Эндоморфоз - восстановление за счет клеточной внутриклеточной перестройки ткани и органа. Благодаря увеличению числа клеток и их размеров масса органа приближается к исходному.

В физиологической регенерации выделяют две фазы: разрушительную и восстановительную. Полагают, что продукты распада части клеток стимулируют пролиферацию других. Большую роль в регуляции клеточного обновления играют гормоны.

Механизмы регуляции регенерации:

гуморальные факторы – вещества выбрасываются в кровь и сдерживают пролиферацию, повышают синтез ДНК и снижают митотическую активность;

гормональные факторы: соматотропный гормон гипофиза стимулирует пролиферацию и активную регенерацию; гормоны щитовидной железы стимулируют процесс регенерации;

иммунные факторы – лимфоциты выполняют информационную роль, Т-лимфоциты стимулируют эффект заживления, а В-лимфоциты угнетают;

нервные механизмы регуляции прежде всего связаны с трофической функцией нервной системы;

47) Репаративная регенерация; способы, механизмы (молекулярногенетические, клеточные и системные). Регуляция регенерации. Особенности восстановительных процессов у человека.

Репаративная регенерация - восстановление структур после травмы или действия других повреждающих факторов. При регенерации происходят такие процессы, как детерминация, дифференцировка, рост, интеграция.

Репаративная регенерация подразделяется на типичную (гомоморфоз) и атипичную (гетероморфоз). В первом случае регенерирует орган, который был удален или разрушен, во втором - на месте удаленного органа развивается другой.

Способы репаративной регенерации:

Заживление эпителиальных ран (у млекопитающих; когда поверхность раны заживает с образованием корки);

Эпиморфоз - отрастание нового органа от ампутационной поверхности. Гипоморфоз – регенерация с частичным замещением ампутированной структуры (у взрослой шпорцевой лягушки возникает шиповидная структура вместо конечности ). Гетероморфоз – появление иной структуры на месте утраченной. (у членистоногих на месте антенны могут развиться конечность или глаз);

Морфаллаксис - регенерация путем перестройки регенерирующего участка. (восстановление целой планарии из 1/20 ее части);

Регенерационная гипертрофия. Заключается в увеличении размеров остатка органа без восстановления исходной формы. (регенерация печени млекопитающих);

Компенсаторная гипертрофия - изменения в одном из органов при нарушении в другом, относящемся к той же системе органов. (усиленная работа в одной из почек при удалении другой или увеличение лимфоузлов при удалении селезенки);

Регенерация у млекопитающих отличается своеобразием. Для регенерации некоторых наружных органов нужны особые условия. Язык, ухо, например, не регенерируют при краевом повреждении. Если же нанести сквозной дефект через всю толщу органа, восстановление идет хорошо. В некоторых случаях наблюдали регенерацию сосков даже при ампутации их по основанию. Регенерация внутренних органов может идти очень активно. Из небольшого фрагмента яичника восстанавливается целый орган.

48) Генофонд популяции; генетическая гетерогенность; генетическое единство, динамическое равновесие. Частоты аллелей и генотипов. Закон Харди-Вайнберга.

Генофонд популяции - совокупность всех генов и генотипов всех особей популяции. Генетическая гетерогенность – наличие в популяции разных аллелей генов. Генетическое единство обуславливается достаточным уровнем панмиксии.(свободного скрещивания особей в популяции)

Динамическое равновесие - состояние относительного равновесия экологических систем, находящихся под действием внешних и внутренних сил (в том числе техногенного или антропогенного происхождения).

Генетическая структура популяции - соотношение частот аллелей ( А и а ) и генотипов (АА, Аа , аа )в генофонде популяции Частота аллеля - фактическая доля аллеля в общем числе аллелей данного признака.

Ожидаемые частоты аллелей и генотипов можно определить по закону Харди — Вайнберга (в пределах генофонда популяции частота аллелей А ( р ) и а ( q ) , а также соотношение генотипов АА, Аа, аа остаётся неизменным из поколения в поколение) ( p + q ) 2 = p2+ 2pq + q2 = 1

р - частота доминантного аллеля (А) q - частота рецессивного аллеля (а)

р2 - частота доминантных гомозиготных генотипов (АА) 2рq - частота гетерозиготных генотипов (Аа)

q2 - частота рецессивных гомозиготных генотипов (аа) Сумма частот всех аллелей одного гена равна - 1 АА + 2Аа + аа = 1

49) Элементарные эволюционные факторы: мутации, популяционные волны, генетико-автоматические процессы (дрейф генов); их значение в изменении генотипической структуры популяций. Генетический полиморфизм природных популяций и его формы.

Элементарные факторы эволюции — факторы, изменяющие частоту аллелей и генотипов в популяции (генетическую структуру популяции).

Мутации — элементарный эволюционный материал, а процесс возникновения мутаций, мутационный процесс, — постоянно действующий элементарный эволюционный фактор, увеличивающий генетическую гетерогенность популяции вследствие сохранения рецессивных мутаций в гетерозиготах. Рецессивные мутации в гетерозиготном состоянии составляют скрытый резерв изменчивости, который может быть использован естественным отбором при изменении условий существования;

Популяционные волны - периодические или апериодические колебания численности особей популяции характерны для всех без исключения живых организмов. Причины - различные абиотические и биотические факторы среды. Действие популяционных волн, или волн жизни, предполагает неизбирательное, случайное уничтожение особей. Эволюционное значение состоит в том, что при резком сокращении численности особей популяции среди случайно оставшихся в живых немногочисленных индивидов могут быть редкие генотипы. В дальнейшем восстановление численности будет идти за счет этих особей, что приведет к изменению частот генов, а значит, генофонда популяции, пережившей катастрофическое сокращение численности.

Причинами популяционных волн могут быть:

периодические изменения экологических факторов среды (сезонные колебания температуры, влажности и т.д.);

непериодические изменения (природные катастрофы);заселение видом новых территорий (сопровождается резкой вспышкой

численности).

Дрейф генов или генетико-автоматические процессы — явление ненаправленного изменения частот аллельных вариантов генов в популяции, обусловленное случайными статистическими причинами. Один из механизмов дрейфа генов: в процессе размножения в популяции образуется большое число половых клеток — гамет. Большая часть этих гамет не формирует зигот. Тогда новое поколение в популяции формируется из выборки гамет, которым удалось образовать зиготы. При этом возможно смещение частот аллелей относительно предыдущего поколения.

Под генетическим полиморфизмом понимается состояние длительного разнообразия генотипов, когда частота даже наиболее редко встречающихся генотипов в популяциях

превышают 1%. Генетический полиморфизм поддерживается за счет мутаций и рекомбинаций генетического материала.

Формы: адаптационный и балансированный.

Адаптационный (приспособительный) возникает, если в различных, но закономерно изменяющихся условиях жизни отбор благоприятствует разным генотипам. Пример: у виноградной улитки часть особей популяции, обитающая на песчаных почвах, имеет белый вход в раковину, а другая часть – красный цвет, они обитают на глинистой почве. У двухточечной божьей коровки есть красные и черные особи. Красные хорошо переносят зиму, а черные хорошо размножаются летом.

Балансированный – гетерозиготный – отбор благоприятствует сохранению гетерозиготных особей. Имеет большой биологический смысл – обеспечивает выживаемость особей в изменяющихся условиях окружающей среды, создает резерв наследственной изменчивости.

50) Популяционная структура человечества. Демографическая характеристика. Особенность действия элементарных эволюционных факторов (мутаций, миграций) в человеческих популяциях. Опасность индуцированного мутагенеза.

Популяция человека - группа людей, занимающих одну территорию и свободно вступающих в брак. Изоляционные барьеры, препятствующие заключению брачных союзов, нередко носят выраженный социальный характер (например, различия в вероисповедании). Благодаря этому в формировании популяций людей главную роль играет не общность территории, а социальные факторы.

Демографические показатели человеческой популяции:

размер популяции;плотность населения;

рождаемость и смертность;возрастная и половая структура;род занятий;экономическое состояние.

Генетическая структура популяций определяется системой браков и частотами генов. Мутации служат основным источником генетической изменчивости, но их частота крайне низка. Мутирование — процесс чрезвычайно медленный, поэтому если мутирование происходило бы само по себе, а не в контексте действия других популяционных факторов (например, дрейфа генов или миграции), то эволюция протекала бы невообразимо медленно.

Миграцией называется процесс перемещения особей из одной популяции в другую и последующее скрещивание представителей этих двух популяций. Миграция обеспечивает «поток генов», т.е. изменение генетического состава популяции, обусловленное поступлением новых генов. Миграция не влияет на частоту аллелей у вида в целом, однако в локальных популяциях поток генов может существенно изменить относительные частоты аллелей при условии, что у «старожилов» и «мигрантов» исходные частоты аллелей различны.

Индуцированный мутагенез - метод получения искусственных мутаций для создания исходного материала при селекции растений. Под воздействием различных мутагенных факторов, применяемых человеком, возникают различные изменения генотипа, что дает возможность получить сорта с новыми признаками и свойствами, не имевшимися у исходных форм. При работе с высшими растениями воздействию мутагена подвергают семена, почки, пыльцу. В этом случае мутации проявляются уже у растений второго поколения. Методом индуцированного мутагенеза получен кормовой люпин Киевский

мутант, пшеница Новосибирская 67, короткостебельные неполегающие мироновские пшеницы, пшеницы с высоким содержанием белка в зерне, подсолнечник Первенец и др. Путем воздействия веществом колхицином созданы полиплоидные сорта клевера, ржи, гречихи, кукурузы, свеклы, многих декоративных растений. Искусственно инициируются человеком для своих нужд. Короче, надо меру знать – вот вся суть опасности.

51) Специфика действия естественного отбора и изоляции в генетических популяциях. Демы. Изоляты. Дрейф генов. Особенности генофондов изолятов.

Изоляция — это нарушение панмиксии и потока генов. Изоляция имеет несколько видов, которые являются основополагающими факторами видообразования.

Географическая изоляция — это пространственная, территориальная, климатическая изоляция, возникающая вследствие прекращения миграции и панмиксии географическими преградами. Биологическая изоляция — это биологические барьеры межпопуляционному скрещиванию. Географическая изоляция обуславливается различными областями проживания организмов, а биологическая изоляция обуславливает прекращение панмиксии и потока генов между двумя видами вследствие биологических и морфофизиологических особенностей.

Изоляция, независимо от ее видов, имеет ряд важных значений: 1. Она нарушает панмиксию; 2. Усиливает в изолятах инбридинг;

3. Закрепляет генотипическую дифференцировку; 4. Ведет к формированию нескольких популяций из одной исходной.

Естественный отбор — процесс, приводящий к выживанию и преимущественному размножению более приспособленных к данным условиям среды особей, обладающих полезными наследственными признаками. Для сферы действия естественного отбора существует одно ограничение: естественный отбор не может изменить организацию какого-либо вида без пользы для него самого и лишь на пользу другому виду. Чаще всего отбор направлен на создание взаимоприспособлений видов друг к другу. Однако отбор часто ведет к созданию признаков и свойств, невыгодных для отдельной особи и полезных для популяции и вида в целом. Генетической основой естественного отбора является наследственная изменчивость, а причиной — влияние условий окружающей среды. Результатом длительного действия отбора является преобразование популяционного генофонда, замена одних количественно преобладающих генотипов другими.

Дем, или генетическая популяция — относительно небольшая внутривидовая группировка сходных особей, живущих на ограниченной территории и скрещивающихся между собой. Число входящих в состав дема особей может колебаться во времени, но обычно оно составляет до нескольких десятков особей. В природе демы, как и виды, могут оставаться неизменными на протяжении многих поколений.

Изоляты - небольшие, генетически изолированные популяции разных видов организмов, в т. ч. людей, внутри которых происходит ассортативное (выборочное) скрещивание. Дрейф генов — явление ненаправленного изменения частот аллельных вариантов генов в популяции, обусловленное случайными статистическими причинами. Один из механизмов дрейфа генов заключается в следующем. В процессе размножения в популяции образуется большое число половых клеток — гамет. Большая часть этих гамет не формирует зигот. Тогда новое поколение в популяции формируется из выборки гамет, которым удалось образовать зиготы. При этом возможно смещение частот аллелей относительно предыдущего поколения.

Особенности генофондов малочисленных популяций:

малый прирост – чем меньше выборка, тем больше отсев;

малый приток генов из других популяций – уменьшает генетическое разнообразие; высокая степень близкородственных браков – увеличивает число больных гомозигот;

дрейф генов – приводит к сглаживанию изменчивости внутри группы и появлению случайных, не связанных с отбором различий между изолятами.

52)Генетический полиморфизм – основа внутри- и межпопуляционной изменчивости человека. Значение полиморфизма в предрасположености к заболеваниям, к реакциям на аллергены, лекарственные препараты, пищевые продуты. Значение генетического разнообразия в будущем человека.

Генетический полиморфизм - сосуществование в пределах популяции двух или нескольких различных наследственных форм, находящихся в динамическом равновесии в течение нескольких и даже многих поколений.

Масштабы полиморфизма ДНК таковы, что между последовательностями ДНК двух людей, если только они не однояйцевые близнецы, существуют миллионы различий. Эти различия подразделяют на четыре большие категории:

- фенотипически не выраженные (например, полиморфные участки ДНК, используемые для идентификации личности молекулярно-генетическими методами); - вызывающие фенотипические различия (например, в цвете волос или росте), но не предрасположенность к заболеванию; - играющие некоторую роль в патогенезе заболевания;

- играющие основную роль в развитии заболевания.

Значение:

Генетическая изменчивость в популяции предоставляет исходный материал для действия естественного отбора и генетического дрейфа, то есть, является необходимым элементом для микроэволюционных процессов. В частности, известны работы о неэффективности отбора в чистых линиях (при отсутствии генетического разнообразия). С другой стороны, генетическая изменчивость сама по себе является продуктом действия факторов микроэволюции.

Генетическое разнообразие имеет большое значение для экологической пластичности популяций. Наличие нескольких аллелей по аллозимным локусам в популяции позволяет этой самой популяции адаптироваться к варьирующим условиям, в которых наличие у особей тех или иных аллелей даёт преимущество. Например, два широко распространённых у Drosophila melanogaster варианта гена алкогольдегидрогеназы оказывают в гомозиготном состоянии альтернативно полезное или вредное воздействие, в зависимости от температурных условий среды.

53) Соотношение онто – и филогенеза. Биогенетический закон Ф. Мюллера и Э. Геккеля. Рекапитуляции и их генетическая основа. Ценогенезы и филэмбриогенезы. Гетеротопии, гетерохронии и их роль в филогенезе.

Онтогенез – индивидуальное развитие организма.

Филогенез – историческое развитие любой биологический системы.

Зародышевое сходство, наблюдаемое в большой группе родственных органов, отражает факт их генетического родства. Связь между филогенезом и онтогенезом отражается в Биогенетическом законе Ф. Мюллера, Э. Геккеля и трудах А. Н. Северцова.

Биогенетичекий закон – Ф. Мюллер (1864) и Э. Геккель (1866)

Онтогенез всякого организма есть краткое и быстрое повторение филогенеза.

В качестве доказательства справедливости закона используют примеры рекапитуляций

— повторении у зародышей в процессе онтогенеза признаков предков по филогенезу. Так, в эмбриогенезе человека эпидермис кожи сначала представлен однослойным цилиндрическим эпителием, затем многослойным, неороговевающим, многослойным слабо ороговевающим и типичным ороговевающим эпителием.

В качестве примеров рекапитуляций служат атавизмы и рудименты.

Атавизм – Рекапитуляция без последующей редукции (у взрослой особи орган развивается в полном объеме, как у предка по филогенезу).

Рудимент - рекапитуляция с последующей редукцией органа, утратившего свое в процессе филогенеза функциональное значение.

Ценогенезы эмбриоадаптации, приспособительные признаки зародышей, не сохраняющиеся у взрослых форм, обеспечивают выживание потомства (зародышевые оболочки наземных позвоночных: амнион, хорион, аллантоис; плацента с пуповиной).

Филэмбриогенезы отклонения от онтогенеза, характерного для предков,

проявляющиеся в эмбриогенезе, но имеющие адаптивное значение у взрослых форм (закладки волосяного покрова появляются у млекопитающих на очень ранних стадиях эмбрионального развития, но сам волосяной покров имеет значение только у взрослых организмов).

Существует 3 типа филэмбриогенезов. Если мутационный процесс затрагивает гены, активные в конце формообразовательного процесса, то возникает анаболия, в середине

девиация, в начале архалаксис.

Анаболии – надставки, дополнения в развитии органа. Законченный морфообразовательный процесс (полная рекапитуляция) дополняется дальнейшей дифференцировкой (развитие пера, мальки рыб практически не отличаются, но в последствии приобретают характерную форму – камбала, изгибов позвоночника, сращение швов в мозговом черепе, окончательное перераспределение кровеносных сосудов в организме млекопитающих и человека, перемещение семенника у человека из брюшной полости через паховый канал в мошонку.)

Девиации – уклонения в развитии органа. На определённом этапе морфообразовательного процесса (частичная рекапитуляция) морфогенез приобретает новый характер, и развитие органа идет по другому пути (в онтогенезе млекопитающих сердца рекапитулирует стадию трубки, двухкамерное и трехкамерное строение, но стадия формирования неполной перегородки, характерной для пресмыкающихся, вытесняется развитием перегородки, построенной и расположенной иначе и характерной только для млекопитающих).

Архалаксисы - изменения закладки органа в начале морфогенеза (рекапитуляции отсутствуют). (перемещение зачатков головного мозга, приводящее к его изгибу, характерному для амниот, и проявляющееся на начальных этапах его дифференцировки)

Гетеротопии и гетерохронии в зависимости от стадий эмбриогенеза и морфогенеза органов расцениваются как филэмбриогенезы разных типов (анаболии, девиации или архаллаксисы).

Гетеротопии — изменения места закладки органа или смещение его относительно главных осей тела (так, сердце птиц и млекопитающих смещается в грудную полость, смещение семенника у человека из брюшной полости через паховый канал в мошонку, наблюдающаяся в конце эмбриогенеза после окончательного его формирования). Гетерохронии - изменение времени закладки органа (так, закладка сердца происходит у высших позвоночных раньше, чем у низших).

Эволюция чаще идет путём анаболий (поэтому наблюдается сходство эмбрионов на ранних стадиях развития, рекапитуляция и выполняется биогенетический закон).

54) Общие закономерности эволюции органов и систем. Основные принципы эволюционного преобразования органов и функций: дифференциация и интеграция; модусы преобразования органов и функций. Примеры.

Основным принципом эволюции органов и систем является дифференциация. Дифференциация - разделение однородной структуры на части, которые имеют различное положения, функции, строение и связи с другими органами (орган из простого становится сложным, а функции органа — более разнообразными, что расширяет возможности адаптации; например, развитие пищеварительной трубки в пищеварительный тракт у позвоночных).

Примером филогенетической дифференциации может являться эволюция кровеносной системы в типе хордовых.

• У подтипа бесчерепных - один круг кровообращения, отсутствие сердца и капилляров в системе жаберных артерий.

• В надклассе рыб - двухкамерное сердце и жаберные капилляры.

• У земноводных - впервые появляется разделение кровеносной системы на два круга кровообращения, а сердце становится трехкамерным.

• У млекопитающих - сердце четырехкамерное, а в сосудах достигается полное разобщение венозного и артериального кровотоков.

Интеграция - усиление взаимозависимости частей организма.

Четырехкамерное сердце млекопитающих - пример высокоинтегрированной структуры:

• Каждый отдел выполняет лишь свою специальную функцию.

• Наличие автономной системой функциональной регуляции в виде парасимпатического атриовентрикулярного нервного узла.

• Строго подчинено нейрогуморальной системе регуляции организма в целом.

Основные модусы (способы) морфофункциональных преобразований органов

Принцип расширения и смены функций – способность органа по мере дифференцировки выполнять все новые функции (пассивные парные плавники рыб, с приобретением собственной мускулатуры и прогрессивным расчленением становятся рулями глубины и обеспечивают поступательные движения).

Расширение функций сопровождается специализацией, благодаря которой главной функцией становится одна из бывших ранее второстепенными. Главная функция преобразуется во второстепенную и может впоследствии даже исчезнуть (переход

предков ластоногих и китообразных к водному образу жизни привел к преобразованию их парных конечностей в ласты, практически утратившие способность обеспечивать передвижение по суше; ленивцы);

Пример: плавательный пузырь

• у рыб - гидростатический орган.

• у кистеперых рыб - дополнительный орган дыхания

• у земноводных - преобразуется в легкое, и основной функцией его становится дыхательная.

• у пресмыкающихся и млекопитающих (крокодилов, ластоногих и китообразных), ведущих водный образ жизни, а также у наземных форм во время плавания - первичная функция плавательного пузыря сохраняется за легкими

• у пресмыкающихся и млекопитающих, ведущих наземный образ жизни, легкие выполняют только дыхательную функцию

Принцип активации функций - когда малоактивный орган начинает активно выполнять функции, существенно при этом преобразуясь (пассивные парные