Добавил:
Здесь собраны файлы для СФ и общие дисциплины других факультетов. Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Ответы на экзамен 2024 (6 в одном)

.pdf
Скачиваний:
4
Добавлен:
07.09.2025
Размер:
21.01 Mб
Скачать

биологических (вирусы, бактерии).

Различают несколько классификаций мутаций.

Классификация 1. Мутации бывают полезные, вредные и нейтральные.

Полезные мутации: мутации, которые приводят к повышенной устойчивости организма (устойчивость тараканов к ядохимикатам).

Вредные мутации: глухота, дальтонизм.

Нейтральные мутации: мутации никак не отражаются на жизнеспособности организма (цвет глаз, группа крови).

Классификация 2. Мутации бывают соматические и генеративные.

Соматические (чаще всего они не наследуются) возникают в соматических клетках и затрагивают лишь часть тела. Они будут наследоваться следующим поколением при вегетативном размножении.

Генеративные (они наследуются, т.к. происходят в половых клетках): эти мутации происходят в половых клетках. Генеративные мутации делятся на ядерные и внеядерные (или митохондриальные).

Классификация 3. По характеру изменений в генотипе мутации подразделяются на генные, хромосомные, геномные.

Генные мутации (точковые) происходят в результате потери нуклеотида, вставки нуклеотида, замены одного нуклеотида другим. Эти мутации могут приводить к генным болезням: дальтонизм, гемофилия. Таким образом, генные мутации приводят к появлению новых признаков.

Хромосомные мутации связаны с изменением структуры хромосом. Может произойти делеция – потеря участка хромосомы, дупликация – удвоение участка хромосомы, инверсия – поворот участка хромосомы на 1800, транслокация – это перенос части или целой хромосомы на другую хромосому. Причиной этого может быть разрыв хроматид и их восстановление в новых сочетаниях.

Геномные мутации приводят к изменению числа хромосом. Различают анеуплоидию и полиплоидию. Анеуплоидия связана с изменением числа хромосом на несколько хромосом (1, 2, 3): А) моносомия общая формула 2n-1 (45, Х0), болезнь – синдром Шерешевского-Тернера. Б) трисомия общая формула 2n+1 (47, ХХХ или 47, ХХУ) болезнь – синдром Клайнфельтра. В) полисомия Моногенные болезни (МБ) - заболевания, в основе этиологии которых лежит единичная

генная мутация. МБ наследуются в соответствии с законами Менделя. В настоящее время описано около 5000 нозологических единиц МБ. Они выявляются у 3-6% новорожденных, а в структуре общей смертности детей до 5 лет на их долю приходится 10-14%. МБ, гены которых картированы на хромосомах, насчитывают до 900 нозологических единиц. Для примерно 350 болезней выяснен характер генной мутации, установлена природа биохимического дефекта. Для ряда МБ физически картированы на хромосомах конкретные мутантные гены. Индивидуальный и популяционный риск возникновения МБ существенно различаются из-за неравномерного распространения обусловливающих их генов. Принято считать, что МБ, встречающиеся с частотой 1:10 000 и выше, это часто встречающиеся, а с частотой менее 1:100 000 - редкие заболевания.

20) Генные мутации, их классификация: делеции, дупликации, инверсии, транслокации. Причины и механизмы возникновения. Значение в развитии патологических состояний человека.

Генные (точковые) мутации - это изменения числа и/или последовательности нуклеотидов в структуре ДНК (вставки, выпадения, перемещения, замещения нуклеотидов) в пределах отдельных генов, приводящие к изменению количества или качества соответствующих белковых продуктов. Причины – нарушения при удвоении (репликации) ДНК. Примеры: серповидноклеточная анемия, фенилкетонурия. Замены оснований приводят к появлению трех типов мутантных кодонов: с измененным смыслом

(миссенс-мутации), с неизмененным смыслом (нейтральные мутации) и бессмысленных, или терминирующих кодонов (нонсенс-мутации).

Виды:

Генные дупликации — удвоение пары или нескольких пар нуклеотидов (удвоение пары Г—Ц).

Генные инсерции — вставка пары или нескольких нар нуклеотидов (вставка пары Г—Ц между А—Т и Т—А).

Генные делеции — выпадение нуклеотидов (выпадение комплементарной пары Т—А между А—Т и Г—Ц).

Генные инверсии — перестановка фрагмента гена (во фрагменте исходная последовательность нуклеотидов Т—А, Г—Ц заменяется на обратную Г—Ц, Т— А).

Большинство генных мутаций рецессивны по отношению к «нормальному» аллелю, который, успешно выдержав отбор на протяжении многих поколений, достиг генетического равновесия с остальным генотипом. Будучи рецессивными, мутантные аллели могут оставаться в популяции в течение многих поколений, пока им не удастся встретиться, т. е. оказаться в гомозиготном состоянии и проявиться в фенотипе. Время от времени могут возникать и доминантные мутантные аллели, которые немедленно дают фенотипический эффект.

21) Хромосомные мутации, их классификация: делеции, дупликации, транслокации, инверсии. Причины и механизмы возникновения. Значение в развитии патологических состояний человека.

Хромосомные перестройки – абберации возникают в результате разрыва хромосомы. Хромосомные перестройки могут быть внутрихромосомными и межхромосомными. Классификация:

Выпадение участков хромосом – делеции; различают терминальные (утрата концевого участка хромосомы) и интеркалярные (утрата участка на внутреннем участке хромосомы), происходят вследствие простого разрыва хромосомы с последующей утратой сегмента или неравного кроссинговера между хромосомами или хроматидами; если после образования делеции, хромосома сохранила центромеру, то она аналогично другим хромосомам передается при делении

 

(синдром кошечьего крика (делеция короткого плеча 5-й хромосомы);

Удвоение отдельных участков хромосом – дупликации; возникает из-за

 

ионизирующих и других видов излучения, некоторых химических соединений,

 

вирусов (синдром Палмистера (дупликация короткого плеча 2 хромосомы);

Поворот участка хромосомы на 180 – инверсии; в зависимости от того, включает

 

ли инвертируемый участок центромеру или нет различают перицентрические и

 

парацентрические инверсии;

Прикрепление оторвавшегося участка хромосомы к другой хромосоме –

 

транслокации; реципрокные транслокации – 2 поврежденные негомологичные

 

хромосомы обмениваются отделившимися от них участками;

Сбалансированные;

 

Несбалансированные;

Робертсоновские – 2 негомологичные хромосомы объединяются в одну или из одной хромосомы образуются две самостоятельные.

Мутационный процесс является главным источником изменений, приводящим к различным патологиям. Задачи науки на ближайшие время определяются как уменьшения генетического груза путем предотвращения или снижения вероятности мутаций и устранения возникших в ДНК изменений с помощью генной инженерии. Генная инженерия - новое направление в молекулярной биологии, появившееся в последние время, которое может в будущем обратить мутации на пользу человеку, в частности, эффективно бороться с вирусами. Уже сейчас существуют вещества называемые антимутагены, которые приводят к ослаблению темпов мутирования. Успехи современной генетики находят применение в диагностики, профилактике и лечении ряда наследственных патологий.

22) Геномные мутации: классификация, причины, механизмы; роль в возникновении хромосомных синдромов. Антимутационные механизмы.

К геномным мутациям относят гаплоидию, полиплоидию и анеуплоидию. Анеуплоидией называют изменение количества отдельных хромосом - отсутствие (моносомия) или наличие дополнительных (трисомия, тетрасомия, в общем случае полисомия) хромосом, т.е. несбалансированный хромосомный набор. Клетки с измененным числом хромосом появляются вследствие нарушений в процессе митоза или мейоза.

Причины мутаций:

Нарушение расхождения бивалентных гомологичных хромосом в анафазе мейоза

1;

Гаметы лишены данной хромосомы;Гаметы имеют одну группу сцепления;

Нарушение расхождения сестринских хроматид в анафазе мейоза 2;Нарушение расхождения хромосом при митозе;

 

Классификация:

1) Геномные синдромы

2) Структурные аберрации

Причины:

 

(Изменения структуры хромосомы)

-нарушение мейоза у родителей

-с.Кошачьего крика

(нерасхождение хромосом)

-с.Орбели

-дробление зиготы

 

 

Изменение числа

Изменение числа

 

аутосом:

хромосом:

 

-с.Дауна

-с.Шершевского-Тернера

 

-с.Патау

-с.Клайнфельтера

-с.Эдвардса

-с.Трисомии-х

23) Человек как объект генетических исследований. Цитогенетический метод; его значение для диагностики хромосомных синдромов. Правила составления идиограмм здоровых людей. Идиограммы при хромосомных синдромах (аутосомных и гоносомных). Примеры.

Человек как объект генетических исследований представляет сложность:Нельзя применять гибридологический метод;Медленная смена поколения;Малое кол-во потомства;Большое число хромосом.

Цитогенетический метод сформировался в течение 20-30х годов, основан на микроскопическом исследовании хромосом. Нормальный кариотип человека включает 46 хромосом(22 пары аутосом и 2 половые хромосомы). Определяют соотношение длинны короткого плеча к длине всей хромосомы. В 1960г. была разработана первая Международная классификация хромосом человека (Денверская). В основу ее были положены особенности величины хромосом и расположение первичной перетяжки. Все аутосомы человека подразделяются на 7 групп: A, B, C, D, E, F,G. все хромосомы имеют порядковые номера. Половые хромосомы - крупная X и мелкая Y- выделяются отдельно.

A1.2.3 (номер) 11-8.3(размер, мкм) 1 и 3-метацентрические, 2-субметацентрические.

B

4.5

7.7

Крупные субметацентрические

C6-12 7.2-5.7 Средние субметацентрические

D

13-15

4.2

Средние акроцентрические

E

16-18

3.6-3.2Мелкие субметацентрические

18-акроцентрические

F19-20 2.3-2.8Самые мелкие метацентрические

G

21-22 2.3 Самые мелкие акроцентрические

(см. Тетрадь №2)

Этапы исследования:

Культивирование клеток человека

Стимуляция митозов фитогемагглютинном (ФГА)

Добавление колхицина (разрушает нити веретена деления) для остановки митоза на стадии метафазы

Обработка клеток гипотоническим раствором, вследствие чего хромосомы рассыпаются и лежат свободно

Окрашивание хромосом

• Вырезание отдельных хромосом и построение идиограммы Его использование дает следующие возможности:

1.Изучать морфологию хромосом и кариотипы, процессы мутагенеза на уровне хромосом и кариотипа

2.Определить генетический пол

3.Диагностировать различные хромосомные болезни( болезнь Дауна у мальчика 47, XY, 21+; Синдром кошачьего крика у девочки: 46, XX, 5p-)

24) Биохимический метод изучения генетики человека; его значение для диагностики наследственных болезней обмена веществ. Роль транскрипционных, посттранскрипционных и посттрансляционных модификаций в регуляции клеточного обмена. Примеры.

Биохимический метод направлен на выявление биохимического фенотипа организма. Этот метод используется для диагностики болезней обмена веществ, причиной которых является изменение активности определенных ферментов. Применяются экспресс-методы основанные на простых качественных реакциях выявления продуктов обмена в моче, крови.

Биохимическую диагностику наследственных нарушений обмена проводят в 2 этапа. На первом этапе отбирают предположительные случаи заболеваний, на втором – более сложными и точными методами уточняют диагноз заболевания. Применение биохимических исследований для диагностики заболеваний в пренатальном периоде или непосредственно после рождения позволяет своевременно выявить патологию и начать специфические медицинские мероприятия.

Наследственные дефекты обмена можно диагностировать посредством определения структуры измененного белка или его количества, выявления дефектных ферментов или обнаружения промежуточных продуктов обмена веществ во внеклеточных жидкостях организма (крови, моче, поте и т.д.). Например, анализ аминокислотных последовательностей мутационно измененных белковых цепей гемоглобина позволил выявить несколько наследственных дефектов, лежащих в основе ряда заболеваний, — гемоглобинозов. Так, при серповидно-клеточной анемии у человека аномальный гемоглобин вследствие мутации отличается от нормального заменой только одной аминокислоты (глутаминовой кислоты на валин).

В практике здравоохранения кроме выявления гомозиготных носителей мутантных генов существуют методы выявления гетерозиготных носителей некоторых рецессивных генов,что особенно важно при медико-генетическом консультировании. Так, у фенотипически нормальных гетерозигот по фенилкетонурии (рецессивный мутантный ген; у гомозигот нарушается обмен аминокислоты фенилаланина, что приводит к умственной отсталости) после приема фенилаланина обнаруживается повышенное его содержание в крови. При гемофилии гетерозиготное носительство мутантного гена может быть установлено с помощью определения активности фермента, измененного в результате мутации.

Пример – фенилкетонурия (ФКУ). Причина возникновения этого заболевания связана с тем, что в печени человека не вырабатывается особый фермент – фенилаланин-4- гидроксилаза. Он отвечает за превращение фенилаланина в тирозин.

Общей же причиной наследственных болезней обмена веществ являются нарушения, произошедшие в процессе транскрипции, трансляции или сборки белка.

25) Генеалогический метод генетики человека. Основные правила составления и последующего анализа родословных схем (на примере собственной родословной схемы). Значение метода в изучении закономерностей наследования признаков.

Генеалогический метод: в основе лежат составление и анализ родословных. Использование этого метода возможно в том случае, когда известны прямые родственники — предки обладателя наследственного признака (пробанда) по материнской и отцовской линиям в ряду поколений или потомки пробанда также в нескольких поколениях.

При составлении родословных в генетике используется определенная система обозначений. После составления родословной проводится ее анализ с целью установления характера наследования изучаемого признака.

Условные обозначения, принятые при составлении родословных:

1 — мужчина; 2 — женщина; 3 — пол не выяснен; 4 — обладатель изучаемого признака; 5 — гетерозиготный носитель изучаемого рецессивного гена; 6 — брак; 7 — брак мужчины с двумя женщинами; 8 — родственный брак; 9 — родители, дети и порядок их рождения; 10 — дизиготные близнецы; 11 — монозиготные близнецы.

Пробанд в родословной обычно обозначается стрелочкой. Поколения обозначают римскими цифрами, индивидов в данном поколении арабскими.

Данный метод можно считать универсальным. Клинико-генеалогический метод широко применяется при решении теоретических проблем:

при установлении наследственного характера признака;при определении типа наследования признака или заболевания;для оценки пенетрантности гена;при анализе сцепления генов и картировании хромосом;

при изучении интенсивности мутационного процесса;при расшифровке механизмов взаимодействия генов.

Составление родословной начинается со сбора сведений о семье, и прежде всего со сбора сведений о пробанде — индивиде, который является предметом интереса исследователя (врача, педагога). Чаще всего это больной или носитель изучаемого признака. Нельзя забывать, что любой человек может обращаться за медико-генетической консультацией.

Дети одной родительской пары (братья и сестры) называются сибсами. Если сибсы имеют только одного родителя, они называются полусибсами.

Различают:

единоутробных (общая мать);единокровных (общий отец).

Обычно родословная собирается в связи с изучением одного или нескольких заболеваний (признаков). Чем больше поколений вовлекается в родословную, тем больше информации она может содержать.

Анализ родословных

При анализе родословных следует учитывать ряд особенностей разных типов

наследования признаков. Аутосомно-доминантное наследование:

признак встречается в родословной часто, практически во всех поколениях, одинаково часто и у мальчиков, и у девочек;

если один из родителей является носителем признака, то этот признак проявится либо у всего потомства, либо у половины.

Аутосомно-рецессивное наследование:

признак встречается редко, не во всех поколениях, одинаково часто и у мальчиков, и у девочек;

признак может проявиться у детей, даже если родители не обладают этим признаком;

если один из родителей является носителем признака, то он не проявится у детей или проявится у половины потомства.

Наследование, сцепленное с полом:Х-доминантное наследование:

— чаще признак встречается у лиц женского пола;

— если мать больна, а отец здоров, то признак передается потомству независимо от пола, он может проявляться и у девочек, и у мальчиков;

— если мать здорова, а отец болен, то у всех дочерей признак будет проявляться, а у сыновей нет.

Х-рецессивное наследование:

— чаще признак встречается у лиц мужского пола;

— чаще признак проявляется через поколение;

— если оба родителя здоровы, во мать гетерозиготна, то признак часто проявляется у 50% сыновей;

— если отец болен, а мать гетерозиготна, то обладателями признака могут быть и лица женского пола.

У-сцепленное наследование (голандрическое наследование):

— признак встречается только у лиц мужского пола;

— если отец несет признак, то, как правило, этим признаком обладают и все сыновья. Цитоплазматическое наследование:

признак одинаково часто встречается у представителей обоих полов;признак передается потомкам только от матери (за ОЧЕНЬ редким исключением);

мать, несущая признак, передает его либо всему потомству, либо только его части.

Правила составления родословных

Родословную изображают так, чтобы каждое поколение находилось на своей горизонтали или радиусе (для обширных родословных). Поколения нумеруются римскими цифрами, а члены родословной — арабскими.

Составление родословной начинают от пробанда. Расположите символ пробанда (в зависимости от пола — квадратик или кружок, обозначенный стрелочкой) так, чтобы от него можно было рисовать родословную как вниз, так и вверх.

Сначала рядом с пробандом разместите символы его родных братьев и сестер в порядке рождения (слева направо), соединив их графическим коромыслом.

Выше линии пробанда укажите родителей, соединив их друг с другом линией брака.

На линии (или радиусе) родителей изобразите символы ближайших родственников и их супругов, соединив соответственно их степени родства.

На линии пробанда укажите его двоюродных и т.д. братьев и сестер, соединтив их соответствующим образом с линией родителей.

Выше линии родителей изобразите линию бабушек и дедушек.

Если у пробанда есть дети или племянники, расположите их на линии ниже линии

пробанда.

После изображения родословной (или одновременно с ним) соответствующим образом покажите обладателей или гетерозиготных носителей признака (чаще всего гетерозиготные носители определяются уже после составления и анализа родословной).

Укажите (если это возможно) генотипы всех членов родословной.

Если в семье несколько наследственных заболеваний, не связанных между собой, составляйте родословную для каждой болезни по отдельности.

26) Методы генетики человека: популяционно-статистический, дерматоглифический (на примере анализа собственного дерматоглифа), генетики соматических клеток, изучения ДНК; их роль в изучении наследственной патологии человека.

Предметом популяционно-статистического метода является изучение частоты генов и генотипов в популяции. Данным методом изучают наследственные признаки в больших группах населения, в одном или нескольких поколениях. В этого метода лежит закон генетического равновесия Харди-Вайнберга. Он отражает закономерность в соответствии с которой при определенных условиях соотношение частоты доминантного гена, его рецессивного аллеля и генотипов в генофонде популяции сохраняется неизменным в ряду поколений этой популяции. На основании этого закона можно определить: частоту встречаемости указанного рецессивного аллеля в генофонде данного поколения; частоту появления индивидов с рецессивным признаком, а также распространения гетерозиготных носителей рецессивного гена. Математически закон Харди-Вайнберга выражается так: p2+2pq+q2=1, где р – доминантные гомозиготы, q – рецессивные гомозиготы, а pq – гетерозиготы.

Закон Харди-Вайнберга - закон популяционной генетики: В популяции бесконечно большого размера, в которой не действует отбор, не идет мутационный процесс, отсутствует обмен особями с другими популяциями, не происходит дрейф генов, все скрещивания случайны (то есть, в т.н. идеальной популяции) - частоты генотипов по какому-либо гену(в случае, если в популяции есть два аллеля этого гена) будут поддерживаться постоянными из поколения в поколение.

Дерматоглифический метод. Дерматоглифика - раздел генетики, изучающий наследственные обусловленные рельефы кожи на пальцах, ладонях и подошв стоп. На этих частях тела имеются эпидермальные выступы - гребни, которые образуют сложные узоры. Рисунки кожных узоров строго индивидуальны и генетически обусловлены. Изучение людей с хромосомными заболеваниями выявило у них специфические изменения не только рисунков пальцев и ладоней, но и характера основных сгибательных борозд на коже ладоней (подробнее – в рабочей тетради №2; инфы слишком много, чтобы ее сюда вставлять).

Метод генетики соматических клеток. С помощью этого метода изучают наследственность и изменчивость соматических клеток, что компенсирует невозможность применения к человеку гибридологического анализа. Используют следующие приемы:

культивирование; позволяет получить достаточное количество генетического материала для различных исследований;

клонирование - получение потомков одной клетки;селекция соматических клеток с интересующими исследователя свойствами;

гибридизация соматических клеток основана на слиянии совместно культивируемых клеток разных типов;

Благодаря методам генетики соматических клеток можно изучать механизмы первичного действия и взаимодействия генов, регуляцию генной активности. Развитие этих методов определило возможность точной диагностики наследственных болезней в пренатальном

периоде.

Изучение ДНК. Нарушения первичных продуктов генов выявляются с помощью биохимических методов. Локализация соответствующих повреждений в самом наследственном материале может быть выявлена методами молекулярной генетики. Разработка метода обратной транскрипции ДНК на молекулах мРНК определенных белков с последующим размножением этих ДНК привела к появлению ДНК-зондов для различных мутаций нуклеотидных последовательностей человека. Использование таких ДНК-зондов для гибридизации с ДНК клеток пациента дает возможность выявлять у него соответствующие изменения в наследственном материале, т.е. диагностировать определенные виды генных мутаций (генодиагностика). Методы молекулярной генетики и генной инженерии позволяют не только диагностировать целый ряд генных мутаций и устанавливать нуклеотидную последовательность отдельных генов человека, но и размножать (клонировать) их и получать в большом количестве белки — продукты соответствующих генов.

27) Понятие наследственных болезней: моногенные, хромосомные и мультифакториальные болезни человека, механизмы их возникновения и проявления. Примеры.

Наследственные заболевания — заболевания, возникновение и развитие которых связано с дефектами в наследственном аппарате клеток, передаваемыми по наследству через гаметы.

Моногенный тип наследования - наследственный признак контролируется одним геном. Моногенные заболевания подразделяются по типу наследования:

Аутосомно-доминантные (если хоть один из родителей болен, то и ребенок будет болеть; Синдром Марфана, ахондроплазия);

Аутосомно-рецессивные (ребенок может заболеть, если оба родителя носители данного заболевания, или один родитель болен, а второй-носитель мутаций гена, вызывающих это заболевание; муковисцидоз, спинальная миоатрофия).

У всех моногенных заболеваний разная распространенность, которая может колебаться и от географии, и от национальности.

К хромосомным относятся болезни, обусловленные геномными мутациями или структурными изменениями отдельных хромосом. Хромосомные мутации возникают в результате мутаций в половых клетках одного из родителей.

Они делятся:

Аномалии числа хромосом:

Болезни, обусловленные нарушением числа аутосом (неполовых) хромосом (Синдром Дауна (трисомия по 21 хромосоме, слабоумие, задержка роста, характерная внешность, изменение дерматоглифики; Синдром Патау (трисомия по 13 хромосоме, идиотия, нарушение строения половых органов, глухота; Синдром Эдвардса(трисомия по 18 хромосоме, ротовое отверстие и нижняя челюсть маленькие, глазные щели узкие и короткие, ушные раковины деформированы);

Болезни, связанные с нарушением числа половых хромосом (Синдром Шерешевского-Тернера(отсутствие одной Х-хромосомы у женщин, низкорослость, бесплодие, половой инфантилизм; Синдром Клайнфельтера (полисомия по Х и Y хромосомам у мальчиков, евнухоидный тип строения, половой инфантилизм, бесплодие, чаще всего отстает развитие);

Болезни, причиной которых является полиплоидия (триплодии, тетраплодии и т.д.- причиной является нарушение процесса мейоза вследствие мутации, в результате чего дочерняя половая клетка получает вместо гаплоидного - диплоидный набор хромосом);

Нарушения структуры хромосом:

Транслокации — обменные перестройки между негомологичными хромосомами;Делеции — потери участка хромосомы; синдром кошачьего крика связан с

делецией короткого плеча 5-й хромосомы(необычный плач детей, напоминающий мяуканье или крик кошки - это связано с патологией гортани или голосовых связок, умственное и физическое недоразвитие, микроцефалия (аномально уменьшенная голова);

Инверсии — повороты участка хромосомы на 180 градусов;Дупликации — удвоения участка хромосомы;

Изохромосомия — хромосомы с повторяющимся генетическим материалом в обоих плечах;

Возникновение кольцевых хромосом — соединение двух концевых делеций в обоих плечах хромосомы.

Мультифакториальные заболевания - болезни с наследственной предрасположенностью.

Группа болезней отличается от генных тем, что для своего проявления нуждается в действии факторов внешней среды (бывают моногенными, наследственная предрасположенность обусловлена одним патологически измененным геном, и полигенными).

У человека описана мутация, обуславливающая патологическую реакцию на загрезнение атмосферы (ранняя эмфизема легких), непереносимость лактозы, специфические реакции на алкоголь.

28) Понятие о болезнях с нетрадиционным наследованием (митохондриальные, болезни импритинга, болезни экспансии тринуклеотидных повторов). Примеры. Общие походы к лечению наследственных болезней.

В настоящее время описано достаточно много заболеваний, которые в современной классификации наследственной патологии человека объединяют в отдельную группу: болезни с нетрадиционным типом наследования. Среди них различают: болезни импринтинга, митохондриальные болезни, болезни экспансии тринуклеотидных повторов с явлением антиципации и др.

Болезни импринтинга. Особенности наследования и фенотипического проявления при болезнях импринтинга обусловлены явлением геномного импринтинга (ГИ) (импринтинг от англ. imprinting — запечатление).

Явление геномного импринтинга связывают со специфическими изменениями хромосом или их участков во время образования мужских и женских гамет. Этим объясняется дифференциальная маркировка отцовских и материнских хромосом у потомков. Точные механизмы дифференциальной маркировки хромосом или их участков в сперматогенезе или овогенезе пока окончательно не выяснены. Однако, немаловажная роль, вероятно, принадлежит процессам специфического метилирования цитозиновых оснований ДНК, выключающим транскрипцию гена.

Импринтированные участки в хромосомах определенного родительского происхождения (отцовских иди материнских) избирательно репрессируются у потомка. В связи с этим фенотипически проявляется только информация, полученная от другого родителя, т.е. имеет место моноаллельная экспрессия. Следовательно, фенотипическое проявление мутантного аллеля зависит от того с какой половой клеткой (яйцеклеткой или сперматозоидом) он был передан потомку.

Явлением ГИ объясняется, например, избирательная инактивация у млекопитающих отцовской Х-хромосомы в клетках провизорных органов. В клетках самого зародыша имеет место равновероятная инактивация отцовской и материнской Х-хромосом.