
- •Foreword
- •Preface
- •Acknowledgments
- •Contents
- •Contributors
- •Introduction
- •Resistance to Antimicrobials
- •Bacterial Cells That Persist
- •Markers of Cell Viability
- •Surface Coating
- •Concluding Remarks
- •References
- •A Brief History of the First Studies on Root Canal Anatomy
- •Computational Methods for the Study of Root Canal Anatomy
- •References
- •Introduction
- •Syringes
- •Needles
- •Physical Properties of Irrigants
- •Irrigant Refreshment
- •Wall Shear Stress
- •Apical Vapor Lock
- •Anatomical Challenges
- •Summary: Clinical Tips
- •References
- •Introduction
- •Challenges of Root Canal Irrigation
- •In Vitro: Direct Contact Tests
- •In Vivo Models
- •Sampling Methods
- •Models to Study Cleaning of Isthmus Areas
- •Dentin Canals
- •Lateral Canals
- •Smear Layer
- •New Models to Study Irrigation
- •Measuring Antibacterial Activity
- •Inaccessible Root Canal Areas
- •Particle Image Velocimetry
- •Irrigation Pressure in the Apical Canal
- •Wall Shear Stress/Wall Velocity
- •Needle Design
- •Conclusions
- •References
- •Antiseptic Solutions
- •Sodium Hypochlorite
- •Mode of Action
- •Concentration
- •Volume
- •Time
- •Effect on the Dentin
- •Depth of Penetration
- •Limitations
- •Clinical Recommendation
- •Chlorhexidine Gluconate (CHX) [6]
- •Molecular Structure
- •Mode of Action
- •Substantivity
- •Chlorhexidine as an Endodontic Irrigant
- •Allergic Reactions to Chlorhexidine
- •Limitations
- •Clinical Recommendations
- •Decalcifying Agents
- •Ethylenediaminetetraacetic Acid
- •History
- •Mode of Action
- •Applications in Endodontics
- •Interaction Between CHX and NaOCl
- •Interaction Between CHX and EDTA
- •Interaction Between EDTA and NaOCl
- •Clinical Recommendations
- •HEBP
- •Effect of Temperature
- •NaOCl + Heat
- •EDTA + Heat
- •CHX + Heat
- •Combinations and Solutions with Detergents
- •BioPure MTAD and Tetraclean
- •Mode of Action
- •Smear Layer Removal
- •Clinical Trials
- •Protocol for Use
- •QMiX
- •Protocol
- •Smear Layer Removal
- •Clinical Trials
- •Disinfection Protocol Suggested
- •References
- •Microbial Control: History
- •NaOCl: Cytotoxicity
- •NaOCl: Complications
- •Maxillary Sinus Considerations
- •Intraosseous Injection
- •The Peck Case History
- •Informed Consent
- •Conclusion
- •References
- •Introduction
- •On Apical Transportation
- •Role of the Patency File on Irrigant Penetration into the Apical Third of Root Canals
- •The Use and Effect of the Patency File in Cleaning of the Root Canals in Teeth with Vital Pulps
- •References
- •Static Versus Dynamic Irrigation
- •The Vapor Lock Effect
- •MDA Mode of Use
- •Conclusion
- •References
- •Apical Negative Pressure
- •The EndoVac System
- •Method of Use
- •Debris Removal
- •Microbial Control
- •Smear Layer Removal
- •Apical Vapour Lock
- •Calcium Hydroxide Removal
- •Sodium Hypochlorite Incidents
- •Safety
- •Conclusion
- •References
- •10: Sonic and Ultrasonic Irrigation
- •Introduction
- •Ultrasonic Activation
- •Ultrasonic Energy Generation
- •Debris and Smear Layer Removal
- •Safety
- •Laser-Activated Irrigation (LAI)
- •Sonic Activation
- •Debris and Smear Layer Removal
- •Safety
- •Summary
- •References
- •The Self-Adjusting File (SAF) System
- •The Self-Adjusting File (SAF)
- •The RDT Handpiece Head
- •EndoStation/VATEA Irrigation Pumps
- •Mode of Irrigation by the SAF System
- •Positive Pressure Irrigation
- •Negative Pressure Irrigation
- •No-Pressure Irrigation
- •Mode of Action of EDTA
- •Mode of Cleaning with the SAF System
- •Disinfection of Oval Canals
- •Effect of Cleaning on Obturation
- •The Challenge of Isthmuses
- •The Challenge of Immature Teeth
- •References
- •12: Ozone Application in Endodontics
- •Introduction
- •Applications of Ozone in Medicine
- •Ozone in Dentistry
- •Effects on Dentin Bonding
- •Ozone in Endodontics
- •Antibacterial Activity
- •Antifungal Activity
- •Ozone and Endotoxin
- •Conclusion
- •References
- •Newer Laser Technology
- •PIPS
- •PIPS Protocol
- •References
- •Introduction
- •Conclusion
- •References
- •Introduction
- •History
- •The Rationale for Local Application of Antibiotics
- •Tetracyclines
- •Structure and Mechanisms of Action
- •Properties
- •Applications in Endodontics
- •Substantivity of Tetracyclines
- •MTAD
- •Antimicrobial Activity
- •Substantivity of MTAD
- •Smear Layer Removal and Effect on Dentin
- •Toxicity of MTAD
- •Tetraclean
- •Antibacterial Activity
- •Substantivity of Tetraclean
- •Smear Layer Removal Ability
- •Ledermix Paste
- •Triple Antibiotic Paste
- •Conclusions
- •References
- •16: Intracanal Medication
- •The Infectious Problem
- •Calcium Hydroxide
- •Vehicles for Calcium Hydroxide
- •Mechanisms of Antimicrobial Effects
- •Combination with Biologically Active Vehicles
- •Paste in CPMC
- •Paste in CHX
- •Chlorhexidine Alone for Intracanal Medication
- •Other Intracanal Medicaments
- •Other Indications for Intracanal Medication
- •References
- •Introduction
- •Missing Canals
- •Vertical Root Fracture
- •Infection
- •Removal of Filling Material
- •Carrier-Based Filling Materials
- •Sodium Hypochlorite (NaOCl)
- •Chelants
- •Ethylenediaminetetraacetic Acid (EDTA)
- •Chlorhexidine Digluconate (CHX)
- •Concluding Remarks
- •References
- •Introduction
- •Irrigation Techniques
- •Concluding Remarks
- •References
- •19: Conclusion and Final Remarks
- •Index

4 Research on Irrigation: Methods and Models |
89 |
|
|
a |
b |
c |
d |
Fig. 4.11 (aÐd) SEM of two different needle tip designs, (a, c) low magniÞcation; (b, d) high magniÞcation
Conclusions
Instrumentation and irrigation are the most important parts of root canal treatment. Irrigation has several key functions, the most important of which are tissue dissolution, killing of microorganisms, and removal of the bioÞlms. Apical irrigation poses a special challenge with regard to effectiveness and safety. During the past few years, a variety of ex vivo bioÞlm models have been developed and used in endodontic research on irrigation, but the full potential of bioÞlm experimentation has not yet been fully exploited. Several new different irrigation models have been developed in recent years and used for a variety of experimental purposes. Future research will hopefully help to optimize the models for each research problem. Generally, models that best can reproduce the in vivo conditions should be preferred. Today, as there is still no ideal irrigation model for all purposes, the challenge continues for the development more
accurate and realistic models to study and improve the effectiveness and safety of root canal irrigation.
References
1.Sjšgren U, HŠgglund B, Sundqvist G, Wing K. Factors affecting the long-term results of endodontic treat-
ment. J Endod. 1990;16:498Ð504.
2. Shuping GB, ¯rstavik D, Sigurdsson A, Trope M. Reduction of intracanal bacteria using nickelÐtitanium rotary instrumentation and various medications. J Endod. 2000;26:751Ð5.
3. Card SJ, Sigurdsson A, ¯rstavik D, Trope M. The effectiveness of increased apical enlargement in reducing intracanal bacteria. J Endod. 2002;28:779Ð83.
4. Fariniuk LF, Baratto-Filho F, da Cruz-Filho AM, de Sousa-Neto MD. Histologic analysis of the cleaning capacity of mechanical endodontic instruments activated by the ENDOßash system. J Endod. 2003;29:651Ð3.
5.Skidmore AE, Bjorndal AM. Root canal morphology of the human mandibular Þrst molar. Oral Surg Oral Med Oral Pathol. 1971;32:778Ð84.
90 |
Y. Shen et al. |
|
|
6. Vertucci FJ. Root canal anatomy of the human permanent teeth. Oral Surg Oral Med Oral Pathol. 1984;58:589Ð99.
7. Peters OA, Laib A, RŸegsegger P, Barbakow F. Threedimensional analysis of root canal geometry using high-resolution computed tomography. J Dent Res. 2000;79:1405Ð9.
8.Moser JB, Heuer MA. Forces and efÞcacy in endodontic irrigation systems. Oral Surg Oral Med Oral Pathol. 1982;53:425Ð8.
9. Chow TW. Mechanical effectiveness of root canal irrigation. J Endod. 1983;9:475Ð9.
10. Sedgley CM, Nagel AC, Hall D, Applegate B. Inßuence of irrigant needle depth in removing bioluminescent bacteria inoculated into instrumented root canals using real-time imaging in vitro. Int Endod
J. 2005;38:97Ð104.
11.Boutsioukis C, Lambrianidis T, Kastrinakis E. Irrigant ßow within a prepared root canal using various ßow rates: a computational ßuid dynamics study. Int Endod J. 2009;42:144Ð55.
12.Tay FR, Gu LS, Schoeffel GJ, Wimmer C, Susin L, Zhang K, Arun SN, Kim J, Looney SW, Pashley DH. Effect of vapor lock on root canal debridement by using a side-vented needle for positive-pressure irrigant delivery. J Endod. 2010;36:745Ð50.
13.Zehnder M. Root canal irrigants. J Endod. 2006;32:389Ð98.
14. Haapasalo M, Shen Y, Qian W, Gao Y. Irrigation in endodontics. Dent Clin North Am. 2010;54:291Ð312.
15.BloomÞeld SF, Miles G. The relationship between residual chlorine and disinfection capacity of sodium hypochlorite and sodium dichloroisocyanurate solu-
tions in the presence of Escherichia coli and milk. Microbios Lett. 1979;10:33Ð43.
16. Cotter JL, Fader RC, Lilley C, Herndon DN. Chemical parameters, antimicrobial activities, and tissue toxicity of 0.1 and 0.5% sodium hypochlorite solutions. Antimicrob Agents Chemother. 1985;28:118Ð22.
17. Christensen CE, McNeal SF, Eleazer P. Effect of lowering the pH of sodium hypochlorite on dissolving tissue in vitro. J Endod. 2008;34:449Ð52.
18.Cunningham WT, Balekjian AY. Effect of temperature on collagen-dissolving ability of sodium hypochlorite endodontic irrigant. Oral Surg Oral Med Oral Pathol. 1980;49:175Ð7.
19.Cunningham WT, Joseph SW. Effect of temperature on the bactericidal action of sodium hypochlorite endodontic irrigant. Oral Surg Oral Med Oral Pathol. 1980;50:569Ð71.
20.Abou-Rass M, Oglesby SW. The effects of tempera-
ture, concentration, and tissue type on the solvent ability of sodium hypochlorite. J Endod. 1981;7:376Ð7.
21. Kamburis JJ, Barker TH, BarÞeld RD, Eleazer PD. Removal of organic debris from bovine dentin shavings. J Endod. 2003;29:559Ð61.
22.Sirtes G, Waltimo T, Schaetzle M, Zehnder M. The effects of temperature on sodium hypochlorite shortterm stability, pulp dissolution capacity, and antimicrobial efÞcacy. J Endod. 2005;31:669Ð71.
23. Giardino L, Ambu E, Becce C, Rimondini L, Morra M. Surface tension comparison of four common root canal irrigants and two new irrigants containing antibiotic. J Endod. 2006;32:1091Ð3.
24. Lui JN, Kuah HG, Chen NN. Effect of EDTA with and without surfactants or ultrasonics on removal of smear layer. J Endod. 2007;33:472Ð5.
25.Bystršm A, Sundqvist G. Bacteriologic evaluation of the efÞcacy of mechanical root canal instrumentation in endodontic therapy. Scand J Dent Res. 1981;89:321Ð8.
26. Dalton BC, ¯rstavik D, Phillips C, Pettiette M, Trope M. Bacterial reduction with nickelÐtitanium rotary instrumentation. J Endod. 1998;24:763Ð7.
27.Siqueira Jr JF, Lima KC, Magalhaes FA, Lopes HP, de Uzeda M. Mechanical reduction of the bacterial population in the root canal by three instrumentation
techniques. J Endod. 1999;25:332Ð5.
28. Siqueira Jr JF, R™•as IN, Favieri A, Lima KC. Chemomechanical reduction of the bacterial population in the root canal after instrumentation and irrigation with 1%, 2.5%, and 5.25% sodium hypochlorite. J Endod. 2000;26:331Ð4.
29.Gomes BP, Ferraz CC, Vianna ME, Berber VB, Teixeira FB, Souza-Filho FJ. In vitro antimicrobial activity of several concentrations of sodium hypochlorite and chlorhexidine gluconate in the
elimination of Enterococcus faecalis. Int Endod J. 2001;34:424Ð8.
30. Lynne RE, Liewehr FR, West LA, Patton WR, Buxton TB, McPherson JC. In vitro antimicrobial activity of various medication preparations on E. faecalis in root canal dentin. J Endod. 2003;29:187Ð90.
31.Vianna ME, Gomes BP, Berber VB, Zaia AA, Ferraz CC, de Souza-Filho FJ. In vitro evaluation of the antimicrobial activity of chlorhexidine and sodium hypochlorite. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2004;97:79Ð84.
32.Haapasalo HK, SirŽn EK, Waltimo TM, ¯rstavik D, Haapasalo MP. Inactivation of local root canal medicaments by dentine: an in vitro study. Int Endod J. 2000;33:126Ð31.
33.Portenier I, Haapasalo H, Rye A, Waltimo T, ¯rstavik D, Haapasalo M. Inactivation of root canal medicaments by dentine, hydroxylapatite and bovine serum albumin. Int Endod J. 2001;34:184Ð8.
34.Portenier I, Haapasalo H, ¯rstavik D, Yamauchi M, Haapasalo M. Inactivation of the antibacterial activity of iodine potassium iodide and chlorhexidine digluconate against Enterococcus faecalis by dentin, dentin matrix, type-I collagen, and heat-killed microbial whole cells. J Endod. 2002;28:634Ð7.
35.Pappen FG, Shen Y, Qian W, Leonardo MR, Giardino L, Haapasalo M. In vitro antibacterial action of Tetraclean, MTAD and Þve experimental irrigation solutions. Int Endod J. 2010;43:528Ð35.
36.Editorial Board of the Journal of Endodontics. Wanted: a base of evidence. J Endod. 2007;33:1401Ð2.
37.Dunavant TR, Regan JD, Glickman GN, Solomon ES, Honeyman AL. Comparative evaluation of endodontic
4 Research on Irrigation: Methods and Models |
91 |
|
|
irrigants against Enterococcus faecalis bioÞlms. J Endod. 2006;32:527Ð31.
38.Williamson AE, Cardon JW, Drake DR. Antimicrobial susceptibility of monoculture bioÞlms of a clinical isolate of Enterococcus faecalis. J Endod. 2009;35:95Ð7.
39.Shen Y, Qian W, Chung C, Olsen I, Haapasalo
M. Evaluation of the effect of two chlorhexidine preparations on bioÞlm bacteria in vitro: a three-dimensional quantitative analysis. J Endod. 2009;35:981Ð5.
40. Liu H, Wei X, Ling J, Wang W, Huang X. BioÞlm formation capability of Enterococcus faecalis cells in starvation phase and its susceptibility to sodium hypochlorite. J Endod. 2010;36:630Ð5.
41.Shen Y, Stojicic S, Haapasalo M. Antimicrobial efÞcacy of chlorhexidine against bacteria in bioÞlms at different stages of development. J Endod. 2011;37:657Ð61.
42.Ch‡vez de Paz LE, Bergenholtz G, SvensŠter G. The effects of antimicrobials on endodontic bioÞlm bacteria. J Endod. 2010;36:70Ð7.
43.Kishen A, George S, Kumar R. Enterococcus faecalis-mediated biomineralized bioÞlm formation on root canal dentine in vitro. J Biomed Mater Res A. 2006;77:406Ð15.
44.Stojicic S, Shen Y, Haapasalo M. The effect of the source of bioÞlm bacteria, the level of bioÞlm maturation, and the type of disinfecting agent on the susceptibility of bioÞlm bacteria to antibacterial agents. J Endod. 2013;39:473Ð7.
45.Siqueira Jr JF, Machado AG, Silveira RM, Lopes HP, de Uzeda M. Evaluation of the effectiveness of sodium hypochlorite used with three irrigation methods in the elimination of Enterococcus faecalis from the root canal, in vitro. Int Endod J. 1997;30:279Ð82.
46. Bhuva B, Patel S, Wilson R, Niazi S, Beighton D, Mannocci F. The effectiveness of passive ultrasonic irrigation on intraradicular Enterococcus faecalis bioÞlms in extracted single-rooted human teeth. Int Endod J. 2010;43:241Ð50.
47. Portenier I, Waltimo T, ¯rstavik D, Haapasalo M. The susceptibility of starved, stationary phase, and growing cells of Enterococcus faecalis to endodontic medi-
|
caments. J Endod. 2005;31:380Ð6. |
48. |
Holland R, Soares IJ, Soares IM. Inßuence of irriga- |
|
tion and intracanal dressing on the healing process |
|
of dogsÕ teeth with apical periodontitis. Endod Dent |
|
Traumatol. 1992;8:223Ð9. |
49. |
Leonardo MR, Almeida WA, Ito IY, da Silva |
|
LA. Radiographic and microbiologic evaluation of post- |
|
treatment apical and periapical repair of root canals of |
dogsÕ teeth with experimentally induced chronic lesion. Oral Surg Oral Med Oral Pathol. 1994;78:232Ð8.
50. Tanomaru Filho M, Leonardo MR, da Silva LA. Effect of irrigating solution and calcium hydroxide root canal dressing on the repair of apical and periapical tissues of teeth with periapical lesion. J Endod. 2002;28:295Ð9.
51. Silva LA, Leonardo MR, Assed S, Tanomaru FM. Histological study of the effect of some irrigating
solutions on bacterial endotoxin in dogs. Braz Dent J. 2004;15:109Ð14.
52. De Rossi A, Silva LA, Leonardo MR, Rocha LB, Rossi MA. Effect of rotary or manual instrumentation, with or without a calcium hydroxide/1% chlorhexidine intracanal dressing, on the healing of experimentally induced chronic periapical lesions. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2005;99:628Ð36.
53.Vivacqua-Gomes N, Gurgel-Filho ED, Gomes BP, Ferraz CC, Zaia AA, Souza-Filho FJ. Recovery of Enterococcus faecalis after singleor multiple-visit root canal treatments carried out in infected teeth ex vivo. Int Endod J. 2005;38:697Ð704.
54.Berber VB, Gomes BP, Sena NT, Vianna ME, Ferraz CC, Zaia AA, Souza-Filho FJ. EfÞcacy of various concentrations of NaOCl and instrumentation techniques in reducing Enterococcus faecalis within root canals and dentinal tubules. Int Endod
J.2006;39:10Ð7.
55.C‰mara AC, de Albuquerque MM, Aguiar CM, de Barros Correia AC. In vitro antimicrobial activity of 0.5%, 1%, and 2.5% sodium hypochlorite in root canals instrumented with the ProTaper Universal system. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108:e55Ð61.
56.Harrison AJ, Chivatxaranukul P, Parashos P, Messer
HH.The effect of ultrasonically activated irrigation on reduction of Enterococcus faecalis in experimentally infected root canals. Int Endod J. 2010;43:968Ð77.
57.Huffaker SK, Safavi K, SpŒngberg LS, Kaufman
B.Inßuence of a passive sonic irrigation system on the elimination of bacteria from root canal systems: a clinical study. J Endod. 2010;36:1315Ð8.
58.GrŸndling GL, Zechin JG, Jardim WM, de Oliveira SD, de Figueiredo JA. Effect of ultrasonics on
Enterococcus faecalis bioÞlm in a bovine tooth model. J Endod. 2011;37:1128Ð33.
59. Kho P, Baumgartner JC. A comparison of the antimicrobial efÞcacy of NaOCl/Biopure MTAD versus NaOCl/EDTA against Enterococcus faecalis. J Endod. 2006;32:652Ð5.
60. Miller TA, Baumgartner JC. Comparison of the antimicrobial efÞcacy of irrigation using the EndoVac to endodontic needle delivery. J Endod. 2010;36:509Ð11.
61. Abdullah M, Ng YL, Gulabivala K, Moles DR, Spratt
DA. |
Susceptibilities |
of two Enterococcus faeca- |
lis phenotypes to root canal medications. J Endod. |
||
2005;31:30Ð6. |
|
|
62. Radcliffe CE, Potouridou L, Qureshi R, Habahbeh |
||
N, |
Qualtrough A, |
Worthington H, Drucker |
DB. Antimicrobial activity of varying concentrations of sodium hypochlorite on the endodontic microorganisms Actinomyces israelii, A. naeslundii, Candida albicans and Enterococcus faecalis. Int Endod
J. 2004;37:438Ð46.
63.Waltimo TM, ¯rstavik D, Siren EK, Haapasalo MP.
In vitro susceptibility of Candida albicans to four
disinfectants and their combinations. Int Endod J. 1999;32:421Ð9.
92 |
Y. Shen et al. |
|
|
64.Ma J, Wang Z, Shen Y, Haapasalo M. A new noninvasive model to study the effectiveness of dentin disinfection by using confocal laser scanning microscopy. J Endod. 2011;37:1380Ð5.
65.Distel JWD. BioÞlm formation in medicated root canals. J Endod. 2002;28:689Ð93.
66.Ch‡vez de Paz LE. RedeÞning the persistent infection in root canals: possible role of bioÞlm communities. J Endod. 2007;33:652Ð62.
67.George S, Kishen A, Song KP. The role of environmental changes on monospecies bioÞlm formation on root canal wall by Enterococcus faecalis. J Endod. 2005;31:867Ð72.
68.Johnson SA, Goddard PA, Iliffe C, Timmins B, Rickard AH, Robson G, Handley PS. Comparative susceptibility of resident and transient hand bacteria to para-chloro-meta-xylenol and triclosan. J Appl Microbiol. 2002;93:336Ð44.
69.Costerton JW, Lewandowski Z, DeBeer D, Caldwell D, Korber D, James G. BioÞlms, the customized microniche. J Bacteriol. 1994;176:2137Ð42.
70. Peters OA, Laib A, Gšhring TN, Barbakow F. Changes in root canal geometry after preparation assessed by high-resolution computed tomography. J Endod. 2001;27:1Ð6.
71. Mannan G, Smallwood E, Gulabivala K. The inßuence of access cavity design on Þling of canals in anterior teeth. Int Endod J. 2001;34:176Ð83.
72. Peters OA, Schšnenberger K, Laib A. Effects of four NiÐTi preparation techniques on root canal geometry assessed by micro computed tomography. Int Endod
J.2001;34:221Ð30.
73.Peters OA, Peters CI, Schšnenberger K, Barbakow
F.ProTaper rotary root canal preparation: effects of canal anatomy on Þnal shape analysed by micro CT. Int Endod J. 2003;36:86Ð92.
74.HŸbscher W, Barbakow F, Peters OA. Root-canal preparation with FlexMaster: canal shapes anal-
ysed by micro-computed tomography. Int Endod J. 2003;36:740Ð7.
75. McComb D, Smith DC, Beagrie GS. The results of in vivo endodontic chemomechanical instrumentationÑ a scanning electron microscope study. J Br Endod Soc. 1976;9:11Ð8.
76. von Arx T. Frequency and type of canal isthmuses in Þrst molars detected by endoscopic inspection during periradicular surgery. Int Endod J. 2005;38:160Ð8.
77. Gu L, Wei X, Ling J, Huang X. A microcomputed tomographic study of canal isthmuses in the mesial root of mandibular Þrst molars in a Chinese population. J Endod. 2009;35:353Ð6.
78. Mannocci F, Peru M, Sherriff M, Cook R, Pitt Ford TR. The isthmuses of the mesial root of mandibular molars: a micro-computed tomographic study. Int Endod J. 2005;38:558Ð63.
79.PaquŽ F, Laib A, Gautschi H, Zehnder M. Hard-tissue debris accumulation analysis by high-resolution com-
puted tomography scans. J Endod. 2009;35:1044Ð7. 80. Endal U, Shen Y, Knut A, Gao Y, Haapasalo M. A
high-resolution computed tomographic study of
changes in root canal isthmus area by instrumentation and root Þlling. J Endod. 2011;37:223Ð7.
81.Usman N, Baumgartner JC, Marshall JG. Inßuence of instrument size on root canal debridement. J Endod.
2004;30:110Ð2.
82. Gutarts R, Nusstein J, Reader A, Beck M. In vivo debridement efÞcacy of ultrasonic irrigation following hand-rotary instrumentation in human mandibular molars. J Endod. 2005;31:166Ð70.
83. Burleson A, Nusstein J, Reader A, Beck M. The in vivo evaluation of hand/rotary/ultrasound instrumentation in necrotic, human mandibular molars. J Endod. 2007;33:782Ð7.
84.Dovgyallo GI, Migun NP, Prokhorenko PP. The complete Þlling of dead-end conical capillaries with liquid. J Eng Phys Thermophys. 1989;56:395Ð7.
85.Migoun NP, Azouni MA. Filling of one-side-closed capillaries immersed in liquids. J Colloid Interf Sci. 1996;181:337Ð40.
86.Pesse AV, Warrier GR, Dhir VK. An experimen-
tal study of the gas entrapment process in closedend microchannels. Int J Heat Mass Transf. 2005;48:5150Ð65.
87. Senia ES, Marshall FJ, Rosen S. The solvent action of sodium hypochlorite on pulp tissue of extracted teeth. Oral Surg Oral Med Oral Pathol. 1971;31:96Ð103.
88.de Gregorio C, Estevez R, Cisneros R, Heilborn C, Cohenca N. Effect of EDTA, sonic, and ultrasonic activation on the penetration of sodium hypochlorite into simulated lateral canals: an in vitro study. J Endod. 2009;35:891Ð5.
89. Gu LS, Kim JR, Ling J, Choi KK, Pashley DH, Tay FR. Review of contemporary irrigant agitation techniques and devices. J Endod. 2009;35:791Ð804.
90.Baumgartner JC, Mader CL. A scanning electron microscopic evaluation of four root canal irrigation regimens. J Endod. 1987;13:147Ð57.
91.OÕConnell MS, Morgan LA, Beeler WJ, Baumgartner JC. A comparative study of smear layer removal using different salts of EDTA. J Endod. 2000;26:739Ð43.
92.Albrecht LJ, Baumgartner JC, Marshall JG. Evaluation of apical debris removal using various sizes and tapers of ProFile GT Þles. J Endod. 2004;30:425Ð8.
93.Johnson M, Sidow SJ, Looney SW, Lindsey K, Niu LN, Tay FR. Canal and isthmus debridement efÞcacy using a sonic irrigation technique in a closed-canal system. J Endod. 2012;38:1265Ð8.
94.Carr GB, Schwartz RS, Schaudinn C, Gorur A, Costerton JW. Ultrastructural examination of failed molar retreatment with secondary apical periodontitis: an examination of endodontic bioÞlms in an endodontic retreatment failure. J Endod. 2009;35:1303Ð9.
95.Ando N, Hoshino E. Predominant obligate anaerobes invading the deep layers of root canal dentin. Int Endod J. 1990;23:20Ð7.
96.Peters LB, Wesselink PR, Buijs JF, van Winkelhoff AJ. Viable bacteria in root dentinal tubules of teeth with apical periodontitis. J Endod. 2001;27:76Ð81.
4 Research on Irrigation: Methods and Models |
93 |
|
|
97. Ricucci D, Pascon EA, Ford TR, Langeland
K.Epithelium and bacteria in periapical lesions. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2006;101:239Ð49.
98.¯rstavik D, Haapasalo M. Disinfection by endodontic irrigants and dressings of experimentally infected dentinal tubules. Endod Dent Traumatol. 1990;6:142Ð9.
99.Haapasalo M, ¯rstavik D. In vitro infection and disinfection of dentinal tubules. J Dent Res. 1987;66:1375Ð9.
100.Love RM, Jenkinson HF. Invasion of dentinal tubules by oral bacteria. Crit Rev Oral Biol Med. 2002;13:171Ð83.
101.Elayouti A, Chu AL, Kimionis I, Klein C, Weiger R, Lšst C. EfÞcacy of rotary instruments with greater taper in preparing oval root canals. Int Endod
J.2008;41:1088Ð92.
102.PaquŽ F, Ganahl D, Peters OA. Effects of root canal preparation on apical geometry assessed by microcomputed tomography. J Endod. 2009;35:1056Ð9.
103.Berutti E, Marini R, Angeretti A. Penetration ability of different irrigants into dentinal tubules. J Endod. 1997;23:725Ð7.
104.Akpata ES, Blechman H. Bacterial invasion of pulpal dentin wall in vitro. J Dent Res. 1982;61:435Ð8.
105.Dymock D, Weightman AJ, Scully C, Wade WG. Molecular analysis of microßora associated with dentoalveolar abscesses. J Clin Microbiol. 1996;34:537Ð42.
106.Zou L, Shen Y, Li W, Haapasalo M. Penetration of sodium hypochlorite into dentin. J Endod. 2010;36:793Ð6.
107.Dammaschke T, Witt M, Ott K, SchŠfer E. Scanning electron microscopic investigation of incidence, location, and size of accessory foramina in primary and permanent molars. Quintessence Int. 2004;35:699Ð705.
108.Gao Y, Haapasalo M, Shen Y, Wu H, Li B, Ruse ND, Zhou X. Development and validation of a threedimensional computational ßuid dynamics model of root canal irrigation. J Endod. 2009;35:1282Ð7.
109.Ricucci D, Siqueira Jr JF. Fate of the tissue in lateral canals, apical ramiÞcations in response to pathologic conditions and treatment procedures. J Endod. 2010;36:1Ð15.
110.de Gregorio C, Paranjpe A, Garcia A, Navarrete N, Estevez R, Esplugues EO, Cohenca N. EfÞcacy of irrigation systems on penetration of sodium hypochlorite to working length and to simulated uninstrumented areas in oval shaped root canals. Int Endod
J.2012;45:475Ð81.
111.McComb D, Smith DC. A preliminary scanning electron microscopic study of root canals after endodontic procedure. J Endod. 1975;1:238Ð42.
112.Mader CL, Baumgartner JC, Peters DD. Scanning electron microscopic investigation of the smeared layer on root canal walls. J Endod. 1984;10:477Ð83.
113.Cengiz T, Aktener BO, Pişkin B. Effect of dentinal tubule orientation on the removal of smear layer by
root canal irrigants. A scanning electron microscopic study. Int Endod J. 1990;23:163Ð71.
114.Aktener BO, Cengiz T, Pişkin B. The penetration of smear material into dentinal tubules dur-
ing instrumentation with surface |
active |
reagents: |
a scanning electron microscopic study. J Endod. |
||
1989;15:588Ð90. |
|
|
115. Eick JD, Wilko RA, Anderson |
CH, |
Sorenson |
SE. Scanning electron microscopy of cut tooth surfaces and identiÞcation of debris by use of the electron microprobe. J Dent Res. 1970;49:1359Ð68.
116.Pashley DH, Tao L, Boyd L, King GE, Horner JA. Scanning electron microscopy of the substructure of smear layers in human dentine. Arch Oral Biol. 1988;33:265Ð70.
117.Pashley DH. Smear layer: overview of structure and function. Proc Finn Dent Soc. 1992;88 Suppl 1:215Ð24.
118.Sen BH, Wesselink PR, TŸrkŸn M. The smear layer:
a phenomenon in root canal therapy. Int Endod
J.1995;28:141Ð8.
119.Czonstkowsky M, Wilson EG, Holstein FA. The smear layer in endodontics. Dent Clin North Am. 1990;34:13Ð25.
120.Calt S, Serper A. Time-dependent effects of EDTA on dentine structures. J Endod. 2002;28:17Ð9.
121.De-Deus G, Reis C, Paciornik S. Critical appraisal of published smear layer-removal studies: methodological issues. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;112:531Ð43.
122.Marques AA, Marchesan MA, Sousa-Filho CB, Silva-Sousa YT, Sousa-Neto MD, Cruz-Filho AM. Smear layer removal and chelated calcium ion quantiÞcation of three irrigating solutions. Braz Dent J. 2006;17:306Ð9.
123.Span— JC, Silva RG, Guedes DF, Sousa-Neto MD, Estrela C, PŽcora JD. Atomic absorption spectrometry and scanning electron microscopy evaluation of concentration of calcium ions and smear layer removal with root canal chelators. J Endod. 2009;35:727Ð30.
124.Mah TF, OÕToole GA. Mechanisms of bioÞlm resistance to antimicrobial agents. Trends Microbiol. 2001;9:34Ð9.
125.SvensŠter G, Bergenholtz G. BioÞlms in endodontic infections. Endod Top. 2004;9:27Ð36.
126.Ruddle CJ. Cleaning and shaping the root canal system. In: Cohen S, Burns RC, editors. Pathways of the pulp. 8th ed. St. Louis: Mosby Inc.; 2002. p. 231Ð91.
127.Stepanović S, Cirković I, Ranin L, Svabić-Vlahović
M.BioÞlm formation by Salmonella spp. and
Listeria monocytogenes on plastic surface. Lett Appl Microbiol. 2004;38:428Ð32.
128. Haapasalo M, Qian W, Portenier I, Waltimo T. Effects of dentin on the antimicrobial properties of endodontic medicaments. J Endod. 2007;33:917Ð25.
129.Jagnow J, Clegg S. Klebsiella pneumoniae MrkDmediated bioÞlm formation on extracellular matrixand collagen-coated surfaces. Microbiology. 2003; 149:2397Ð405.
94 |
Y. Shen et al. |
|
|
130.Black C, Allan I, Ford SK, Wilson M, McNab R. BioÞlm speciÞc surface properties and protein expression in oral Streptococcus sanguis. Arch Oral Biol. 2004;49:295Ð304.
131.Dewez JL, Lhoest JB, Detrait E, Berger V, DupontGillain CC, Vincent LM, Schneider YJ, Bertrand P, Rouxhet PG. Adhesion of mammalian cells to polymer surfaces: from physical chemistry of surfaces to selective adhesion on deÞned patterns. Biomaterials. 1998;19:1441Ð5.
132. De Bruyne MA, De Bruyne RJ, De Moor RJ. Capillary ßow porometry to assess the seal provided by root-end Þlling materials in a standardized and reproducible way. J Endod. 2006;32:206Ð9.
133.Lundstršm JR, Williamson AE, Villhauer AL, Dawson DV, Drake DR. Bactericidal activity of stabilized chlorine dioxide as an endodontic irrigant in a polymicrobial bioÞlm tooth model system. J Endod. 2010;36:1874Ð8.
134.Camargo CH, Siviero M, Camargo SE, de Oliveira SH, Carvalho CA, Valera MC. Topographical, diametral, and quantitative analysis of dentin tubules in the root canals of human and bovine teeth. J Endod. 2007;33:422Ð6.
135.Outhwaite WC, Livingston MJ, Pashley DH. Effects of changes in surface area, thickness, temperature and post-extraction time on human dentine permeability. Arch Oral Biol. 1976;21:599Ð603.
136.Prati C, Pashley DH. Dentine wetness, permeability and thickness and bond strength of adhesive systems. Am J Dent. 1992;5:33Ð8.
137.Schmalz G, Hiller KA, Nunez LJ, Stoll J, Weis K. Permeability characteristics of bovine and human dentin under different pre-treatment conditions. J Endod. 2001;27:23Ð30.
138.Forssell-Ahlberg K, BrŠnnstršm M, Edwall L. The diameter and number of dentin tubules in rat, cat, dog and monkey. A comparative scanning electron microscopic study. Acta Odontol Scand. 1975;33:243Ð50.
139.Dourda AO, Moule AJ, Young WG. A morphometric analysis of the cross-sectional area of dentine occupied by dentin tubules in human third molar teeth. Int Endod J. 1994;27:184Ð9.
140.Park Y, Park SN, Park SC, Park JY, Park YH, Hahm JS, Hahm KS. Antibiotic activity and synergistic effect of antimicrobial peptide against pathogens from a patient with gallstones. Biochem Biophys Res Commun. 2004;321:631Ð7.
141.Gottenbos B, Grijpma DW, van der Mei HC, Feijen J, Busscher HJ. Antimicrobial effects of positively charged surfaces on adhering Gram-positive and Gram-negative bacteria. J Antimicrob Chemother. 2001;48:7Ð13.
142.Tsibouklis J, Stone M, Thorpe AA, Graham P, Peters V, Heerlien R, Smith JR, Green KL, Nevell TG. Preventing bacterial adhesion onto surfaces: the low-surface- energy approach. Biomaterials. 1999;20:1229Ð35.
143.Pozarowska D, Pozarowski P. Benzalkonium chloride (BAK) induces apoptosis or necrosis, but has
no major inßuence on the cell cycle of Jurkat cells. Folia Histochem Cytobiol. 2011;49:225Ð30.
144.Jaramillo DE, Arriola A, Safavi K, Ch‡vez de Paz LE. Decreased bacterial adherence and bioÞlm growth on surfaces coated with a solution of benzalkonium chloride. J Endod. 2012;38:821Ð5.
145.Kishen A, Haapasalo M. BioÞlm models and methods of bioÞlm assessment. Endod Top. 2010;22:58Ð78.
146.Spratt DA, Pratten J, Wilson M, Gulabivala K. An in vitro evaluation of the antimicrobial efÞcacy of irrigants on bioÞlms of root canal isolates. Int Endod J. 2001;34:300Ð7.
147.Sena NT, Gomes BP, Vianna ME, Berber VB, Zaia AA, Ferraz CC, Souza-Filho FJ. In vitro antimicrobial activity of sodium hypochlorite and chlorhexidine against selected single-species bioÞlms. Int Endod J. 2006;39:878Ð85.
148.Bryce G, OÕDonnell D, Ready D, Ng YL, Pratten J, Gulabivala K. Contemporary root canal irrigants are able to disrupt and eradicate singleand dual-species bioÞlms. J Endod. 2009;35:1243Ð8.
149.Jiang LM, Hoogenkamp MA, van der Sluis LW, Wesselink PR, Crielaard W, Deng DM. Resazurin metabolism assay for root canal disinfectant evaluation on dual-species bioÞlms. J Endod. 2011;37:31Ð5.
150.Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A. The Calgary BioÞlm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial bioÞlms. J Clin Microbiol. 1999;37:1771Ð6.
151.Hoogenkamp MA, Crielaard W, ten Cate JM, Wever R, Hartog AF, Renirie R. Antimicrobial activity of vanadium chloroperoxidase on plank-
tonic Streptococcus mutans cells and Streptococcus mutans bioÞlms. Caries Res. 2009;43:334Ð8.
152. Ito A, Taniuchi A, May T, Kawata K, Okabe S. Increased antibiotic resistance of Escherichia coli in mature bioÞlms. Appl Environ Microbiol. 2009;75:4093Ð100.
153.Davies D. Understanding bioÞlm resistance to antibacterial agents. Nat Rev Drug Discov. 2003;2:114Ð22.
154.Du T, Shi Q, Shen Y, Cao Y, Ma J, Lu X, Xiong Z, Haapasalo M. Effect of modiÞed nonequilibrium plasma with chlorhexidine digluconate against endodontic bioÞlms in vitro. J Endod. 2013;39:1438Ð43.
155.Arias-Moliz MT, Ferrer-Luque CM, EspigaresGarcia M, Baca P. Enterococcus faecalis bioÞlms eradication by root canal irrigants. J Endod. 2009;35:711Ð4.
156.Arias-Moliz MT, Ferrer-Luque CM, Gonz‡lezRodr’guez MP, Valderrama MJ, Baca P. Eradication of Enterococcus faecalis bioÞlms by cetrimide and chlorhexidine. J Endod. 2010;36:87Ð90.
157.Shen Y, Stojicic S, Haapasalo M. Bacterial viability in starved and revitalized bioÞlms: comparison of viability staining and direct culture. J Endod. 2010;36:1820Ð3.
158.Ch‡vez de Paz LE. Development of a multispecies bioÞlm community by four root canal bacteria. J Endod. 2012;38:318Ð23.
4 Research on Irrigation: Methods and Models |
95 |
|
|
159.Heim S, Lleo MM, Bonato B, Guzman CA, Canepari
P.The viable but nonculturable state and starvation are different stress responses of Enterococcus faecalis, as determined by proteome analysis. J Bacteriol. 2002;184:6739Ð45.
160.Clegg MS, Vertucci FJ, Walker C, Belanger M, Britto LR. The effect of exposure to irrigant solutions on apical dentin bioÞlms in vitro. J Endod. 2006;32:434Ð7.
161.Aas JA, Paster BJ, Stokes LN, Olsen I, Dewhirst FE. DeÞning the normal bacterial ßora of the oral cavity. J Clin Microbiol. 2005;43:5721Ð32.
162.Sjšgren U, Happonen RP, Kahnberg KE, Sundqvist
G.Survival of Arachnia propionica in periapical tissue. Int Endod J. 1988;21:277Ð82.
163.Nair PNR, Sjšgren U, Kahnberg KE, Krey G, Sundqvist G. Intraradicular bacteria and fungi in root-Þlled, asymptomatic human teeth with therapyresistant periapical lesions: a long-term light and electron microscopic follow-up study. J Endod. 1990;16:580Ð8.
164.Figdor D, Sjšgren U, Sšrlin S, Sundqvist G, Nair
PN. Pathogenicity of Actinomyces israelii and Arachnia propionica: experimental infection in guinea pigs and phagocytosis and intracellular killing by human polymorphonuclear leukocytes in vitro. Oral Microbiol Immunol. 1992;7:129Ð36.
165. Ricucci D, Siqueira Jr JF, Bate AL, Pitt Ford TR. Histologic investigation of root canal-treated teeth with apical periodontitis: a retrospective study from twenty-four patients. J Endod. 2009;3:493Ð502.
166.Sundqvist G. Bacteriological studies of necrotic dental pulps. Odontological Dissertations, No. 7. Umea: University of Umea; 1976.
167.Siqueira Jr JF, Lopes HP. Bacteria on the apical root surfaces of untreated teeth with periradicular lesions: a scanning electron microscopy study. Int Endod J. 2001;34:216Ð20.
168.Ricucci D, Siqueira Jr JF. BioÞlms and apical periodontitis: study of prevalence, association with clinical and histopathologic Þndings. J Endod. 2010;36:1277Ð88.
169.McFeters GA. Enumeration, occurrence and signiÞcance of injured indicator bacteria in drinking water. In: McFeters GA, editor. Drinking water microbiology: progress and recent developments. Madison: Science Technology; 2009.
170.Purevdorj B, Costerton JW, Stoodley P. Inßuence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa bioÞlms. Appl Environ Microbiol. 2002;68:4457Ð64.
171.Stoodley P, Dodds I, Boyle JD, Lappin-Scott HM. Inßuence of hydrodynamics and nutrients on bioÞlm structure. J Appl Microbiol. 1998;85 Suppl 1:19SÐ28.
172.Liu Y, Tay JH. Metabolic response of bioÞlm to shear stress in Þxed-Þlm culture. J Appl Microbiol. 2001;90:337Ð42.
173.Stoodley P, Jacobsen A, Dunsmore BC, Purevdorj B, Wilson S, Lappin-Scott HM, Costerton JW. The
inßuence of ßuid shear and AICI3 on the material properties of Pseudomonas aeruginosa PAO1 and Desulfovibrio sp. EX265 bioÞlms. Water Sci Technol. 2001;43:113Ð20.
174.Stoodley P, Cargo R, Rupp CJ, Wilson S, Klapper
I.BioÞlm material properties as related to shearinduced deformation and detachment phenomena. J Ind Microbiol Biotechnol. 2002;29:361Ð7.
175.Merritt JH, Kadouri DE, OÕToole GA. Growing and analyzing static bioÞlms. Curr Protoc Microbiol. 2005;22:Chapter 1:Unit 1B.1.
176.Lee SJ, Wu MK, Wesselink PR. The efÞcacy of ultrasonic irrigation to remove artiÞcially placed dentine debris from different-sized simulated plastic root canals. Int Endod J. 2004;37:607Ð12.
177.van der Sluis LW, Wu MK, Wesselink PR. The efÞcacy of ultrasonic irrigation to remove artiÞcially placed dentine debris from human root canals prepared using instruments of varying taper. Int Endod
J.2005;38:764Ð8.
178.van der Sluis LW, Wu MK, Wesselink PR. A comparison between a smooth wire and a K-Þle in removing artiÞcially placed dentine debris from root canals in resin blocks during ultrasonic irrigation. Int Endod J. 2005;38:593Ð6.
179.van der Sluis LW, Gambarini G, Wu MK, Wesselink PR. The inßuence of volume, type of irrigant and ßushing method on removing artiÞcially placed dentine debris from the apical root canal during passive ultrasonic irrigation. Int Endod J. 2006;39:472Ð6.
180.van der Sluis LW, Wu MK, Wesselink PR. The evaluation of removal of calcium hydroxide paste from an artiÞcial standardized groove in the apical root canal using different irrigation methodologies. Int Endod J. 2007;40:52Ð7.
181.Lin J, Shen Y, Haapasalo M. A comparative study of bioÞlm removal with hand, rotary nickelÐtitanium and self-adjusting Þle instrumentation using a novel in vitro bioÞlm model. J Endod. 2013;39:658Ð63.
182.Nagayoshi M, Kitamura C, Fukuizumi T, Nishihara T, Terashita M. Antimicrobial effect of ozonated water on bacteria invading dentinal tubules. J Endod. 2004;30:778Ð81.
183.Zapata ROBC, Moraes IG, Bernardineli N, Gasparoto TH, Graeff MS, Campanelli AP, Garcia RB. Confocal laser scanning microscopy is appropriate to detect viability of Enterococcus faecalis in infected dentin. J Endod. 2008;34:1198Ð201.
184.Wang Z, Shen Y, Ma J, Haapasalo M. The effect of detergents on the antibacterial activity of disinfecting solutions in dentin. J Endod. 2012;38:948Ð53.
185.Wang Z, Shen Y, Haapasalo M. Effectiveness of endodontic disinfecting solutions against young and old Enterococcus faecalis bioÞlms in dentin canals.
JEndod. 2012;38:1376Ð9.
186.Clarkson RM, Moule AJ, Podlich H, Kellaway R, Macfarlane R, Lewis D, Rowell J. Dissolution of porcine incisor pulps in sodium hypochlorite solutions of varying compositions and concentrations. Aust Dent J. 2006;51:245Ð51.
96 |
Y. Shen et al. |
|
|
187.Hasselgren G, Olsson B, Cvek M. Effects of calcium hydroxide and sodium hypochlorite on the dissolution of necrotic porcine muscle tissue. J Endod. 1988;14:125Ð7.
188.Moorer WR, Wesselink PR. Factors promoting the tissue dissolving capability of sodium hypochlorite. Int Endod J. 1982;15:187Ð96.
189.Hand RE, Smith ML, Harrison JW. Analysis of the effect of dilution on the necrotic tissue dissolution property of sodium hypochlorite. J Endod. 1978;4:60Ð4.
190.Naenni N, Thoma K, Zehnder M. Soft tissue dissolution capacity of currently used and potential endodontic irrigants. J Endod. 2004;30:785Ð7.
191.TŸrkŸn M, Cengiz T. The effects of sodium hypochlorite and calcium hydroxide on tissue dis-
solution and root canal cleanliness. Int Endod
J.1997;30:335Ð42.
192.Okino LA, Siqueira EL, Santos M, Bombana AC, Figueiredo JA. Dissolution of pulp tissue by aqueous solution of chlorhexidine digluconate and chlorhexidine digluconate gel. Int Endod J. 2004;37:38Ð41.
193.Clarkson RM, Kidd B, Evans GE, Moule AJ. The effect of surfactant on the dissolution of porcine pulpal tissue by sodium hypochlorite solutions. J Endod. 2012;38:1257Ð60.
194.Koskinen KP, Stenvall H, Uitto VJ. Dissolution of bovine pulp tissue by endodontic solutions. Scand J Dent Res. 1980;88:406Ð11.
195.Mehra P, Clancy C, Wu J. Formation of a facial hematoma during endodontic therapy. J Am Dent Assoc. 2000;131:67Ð71.
196.Gernhardt CR, Eppendorf K, Kozlowski A, Brandt
M.Toxicity of concentrated sodium hypochlorite used as an endodontic irrigant. Int Endod J. 2004;37:272Ð80.
197.Barnhart BD, Chuang A, Lucca JJ, Roberts S, Liewehr F, Joyce AP. An in vitro evaluation of the cytotoxicity of various endodontic irrigants on human gingival Þbroblasts. J Endod. 2005;31:613Ð5.
198.Ari H, Erdemir A, Belli S. Evaluation of the effect of endodontic irrigation solutions on the microhardness and the roughness of root canal dentin. J Endod. 2004;30:792Ð5.
199.Marending M, PaquŽ F, Fischer J, Zehnder M. Impact of irrigant sequence on mechanical properties of
human root dentin. J Endod. 2007;33:1325Ð8.
200. Grigoratos D, Knowles J, Ng YL, Gulabivala
K.Effect of exposing dentine to sodium hypochlorite and calcium hydroxide on its ßexural strength and elastic modulus. Int Endod J. 2001;34:113Ð9.
201.Sayin TC, Cehreli ZC, Deniz D, Akcay A, Tuncel B, Dagli F, Gozukara H, Kalayci S. Time-dependent decalcifying effects of endodontic irrigants with antibacterial properties. J Endod. 2009;35:280Ð3.
202.Rossi-Fedele G, De Figueiredo JA. Use of a bottle warmer to increase 4% sodium hypochlorite tissue dissolution ability on bovine pulp. Aust Endod
J.2008;34:39Ð42.
203.Haapasalo M, Wang Z, Shen Y, Curtis A, Patel P, Khakpour M. Tissue dissolution by a novel multi-
sonic ultracleaning system and sodium hypochlorite. J Endod. 2014;40:1178Ð81.
204.Childer H, Yee FS. Canal debridement and disinfection. In: Cohen S, Burns RC, editors. Pathways of the pulp. 3rd ed. St. Louis: The C.V. Mosby Company; 1984. p. 175.
205.Cameron JA. The effect of a ßuorocarbon surfactant on the surface tension of the endodontic irrigant, sodium hypochlorite. A preliminary report. Aust Dent J. 1986;31:364Ð8.
206.Jungbluth H, Peters C, Peters O, Sener B, Zehnder
M.Physicochemical and pulp tissue dissolution properties of some household bleach brands compared with a dental sodium hypochlorite solution. J Endod. 2012;38:372Ð5.
207.Jungbluth H, Marending M, De-Deus G, Sener B, Zehnder M. Stabilizing sodium hypochlorite at high pH: effects on soft tissue and dentin. J Endod. 2011;37:693Ð6.
208.Kuttler Y. Microscopic investigation of root apexes.
JAm Dent Assoc. 1955;50:544Ð52.
209.Ponce EH, Vilar Fern‡ndez JA. The cemento- dentino-canal junction, the apical foramen, and the apical constriction: evaluation by optical microscopy. J Endod. 2003;29:214Ð9.
210.Green D. A stereomicroscopic study of the root apices of 400 maxillary and mandibular anterior teeth. Oral Surg Oral Med Oral Pathol. 1956;9:1224Ð32.
211. Al-Jadaa A, PaquŽ F, Attin T, Zehnder M. Necrotic pulp tissue dissolution by passive ultrasonic irrigation in simulated accessory canals: impact of canal location and angulation. Int Endod
J. 2009;42:59Ð65.
212.de Gregorio C, Estevez R, Cisneros R, Paranjpe A, Cohenca N. EfÞcacy of different irrigation and activation systems on the penetration of sodium
hypochlorite into simulated lateral canals and up to working length: an in vitro study. J Endod. 2010;36:1216Ð21.
213.Pashley EL, Birdsong NL, Bowman K, Pashley DH. Cytotoxic effects of NaOCl on vital tissue. J Endod. 1985;11:525Ð8.
214.Gulabivala K, Ng YL, Gilbertson M, Eames I. The ßuid mechanics of root canal irrigation. Physiol Meas. 2010;31:R49Ð84.
215.Shen Y, Gao Y, Qian W, Ruse ND, Zhou X, Wu H, Haapasalo M. Three-dimensional numeric simulation of root canal irrigant ßow with different irrigation needles. J Endod. 2010;36:884Ð9.
216.Banks J, Bressloff NW. Turbulence modeling in three-dimensional stenosed arterial bifurcations. J Biomech Eng. 2007;129:40Ð50.
217.Vogel M, Franke J, Frank W, Schroten H. Flow in the well: computational ßuid dynamics is essential in ßow chamber construction. Cytotechnology. 2007;55:41Ð54.
218.van Ertbruggen C, Corieri P, Theunissen R, Riethmuller ML, Darquenne C. Validation of CFD predictions of ßow in a 3D alveolated bend with experimental data. J Biomech. 2008;41:399Ð405.
4 Research on Irrigation: Methods and Models |
97 |
|
|
219. Raffel M, Willert C, Wereley S, Kompenhans J. Particle imaging velocimetryÑa practical guide. 2nd ed. Berlin: Springer; 2007. p. 1Ð448.
220.de Groot SD, Verhaagen B, Versluis M, Wu MK, Wesselink PR, van der Sluis LW. Laser-activated irrigation of the root canal: cleaning efÞcacy and ßow visualization. Int Endod J. 2009;42:1077Ð83.
221.Boutsioukis C, Verhaagen B, Versluis M, Kastrinakis E, van der Sluis LW. Irrigant ßow in the root canal: experimental validation of an unsteady Computational Fluid Dynamics model using highspeed imaging. Int Endod J. 2010;43:393Ð403.
222.Koch JD, Smith NA, Garces D, Gao L, Olsen FK. In vitro particle image velocity measurements in a model root canal: ßow around a polymer rotary Þnishing Þle. J Endod. 2014;40:412Ð6.
223.Park E, Shen Y, Haapasalo M. Apical pressure and extent of irrigant ßow beyond the needle tip during positive pressure irrigation in an in vitro root canal model. J Endod. 2013;39:511Ð5.
224.Boutsioukis C, Gogos C, Verhaagen B, Versluis M, Kastrinakis E, Van der Sluis LW. The effect of root canal taper on the irrigant ßow: evaluation using an unsteady Computational Fluid Dynamics model. Int Endod J. 2010;43:909Ð16.
225.Boutsioukis C, Gogos C, Verhaagen B, Versluis M, Kastrinakis E, Van der Sluis LW. The effect of apical preparation size on irrigant ßow in root canals
evaluated using an unsteady computational ßuid dynamics model. Int Endod J. 2010;43:874Ð81.
226.Huang TY, Gulabivala K, Ng YL. A bio-molecular Þlm ex vivo model to evaluate the inßuence of canal dimensions and irrigation variables on the efÞcacy of irrigation. Int Endod J. 2008;41:60Ð71.
227.Goldman M, Kronman JH, Goldman LB, Clausen H, Grady J. New method of irrigation during endodontic treatment. J Endod. 1976;2:257Ð60.
228.Goldman LB, Goldman M, Kronman JH, Lin PS. Scanning electron microscope study of a new irrigation method in endodontic treatment. Oral Surg Oral Med Oral Pathol. 1979;48:79Ð83.
229.Kahn FH, Rosenberg PA, Gliksberg J. An in vitro evaluation of the irrigating characteristics of ultrasonic and subsonic handpieces and irrigating needles and probes. J Endod. 1995;21:277Ð80.
230.Yamamoto A, Otogoto J, Kuroiwa A, Maeda M, Yamaguchi H, Yamada H, Anzai M, Kasahara E. The effect of irrigation using trial-manufactured washing needle. Jap J Conserv Dent. 2006;49:64Ð70.
231.Vinothkumar TS, Kavitha S, Lakshminarayanan L, Gomathi NS, Kumar V. Inßuence of irrigating needle-tip designs in removing bacteria inoculated into instrumented root canals measured using singletube luminometer. J Endod. 2007;33:746Ð8.
232.HŸlsmann M, Ršdig T, Nordmeyer S. Complications during root canal irrigation. Endod Top. 2009;16:27Ð63.

Update of Endodontic Irrigating |
5 |
Solutions |
Bettina Basrani and Gevik Malkhassian
Abstract
Successful root canal therapy depends on thorough debridement of pulpal tissue, dentin debris, and infective microorganisms. Currently, it is impossible to predictably eradicate intraradicular infection with mechanical instrumentation alone. Therefore, irrigants are required to be used as an important addition in the disinfection process. This chapter analyzes the main irrigating solutions used during the endodontic treatment and their actions and interactions among them. Explanation of their mechanism of action and effect on dentin structure and on bioÞlm is also described. A clinical protocol is proposed at the end of the chapter.
The goal of endodontic treatment is to prevent or cure apical periodontitis. Apical periodontitis is an inßammatory process in the periradicular tissues caused by microorganisms in the infected root canal [84]. It is well known that shaping, cleaning, and obturating the root canal system provide the strategy for successful treatment. The principle to reach favorable outcomes in endodontic infection management requires the recognition of the problem and the removal of the etiological factors.
B. Basrani, DDS, MSc, RCDC (F), PhD (*)
Associate Professor, Director M.Sc.
Endodontics Program, Faculty of Dentistry,
University of Toronto, 348C-124 Edward Street,
Toronto, ON M5G1G6, Canada
e-mail: Bettina.Basrani@dentistry.utoronto.ca
G. Malkhassian, DDS, MSc, FRCD(C)
Assistant Professor, Discipline of Endodontics,
Faculty of Dentistry, University of Toronto,
Toronto, ON, Canada
In endodontic disinfection, there are two main challenges which are important to be recognized the anatomical challenge and the microbiological challenge [42].
The anatomical challenge can be divided into complexity of the root canal system, dentin structure, and dentin constituents.
Anatomical Complexities (also see Chap. 2): Root canal is an enclosed complex space with intricate conÞgurations and apical constriction it is important to mention here that more than 35 % of the root canal surface is left untouched by conventional instrumentation [35, 64] (Fig. 5.1). Also, common instrumentation techniques accumulate debris in isthmus areas. Paque et al. showed explained that when rotary Þles are used in canal with a round cross section, the dentine particles that are cut from the canal wall are car-
© Springer International Publishing Switzerland 2015 |
99 |
B. Basrani (ed.), Endodontic Irrigation: Chemical Disinfection of the Root Canal System, DOI 10.1007/978-3-319-16456-4_5

100 |
B. Basrani and G. Malkhassian |
|
|
P
T
N
C
M
A
Fig. 5.1 MicroCT scan of preand post-instrumentation in a lower molar. Note the amount of walls not touch by the instruments. Lateral view of representative 3D reconstructions of the internal anatomy of a mesial roots of a
mandibular molar, before (in green) and after (in red) canal preparation C Coronal, M Middle, A Apical, (Courtesy of Dr Gagliardi, Versiani and Sousa-Neto)
Fig. 5.2 SEM of dentin structure showing irregularities of dentin tissue
ried coronally by the ßutes of the Þle, in a manner similar to that of a common mechanical spiral drill. This removal is apparently less effective when the Þle has no dentine wall on one side, as is the case of a canal adjacent to an isthmus. Rather than being carried coronally or being contained and packed in the ÞleÕs ßute space, the debris was most probably actively packed into the area with the least resistance, namely into the isthmus [62].
Dentin Structure Physiologically and anatomically, the dentin is a complex structure. Type I collagen is the major protein of intertubular dentin (90 %), whereas no collagen Þbrils are observed in the peritubular dentin. The structure
is a porous conÞguration with dentinal tubules that allow bacterial invasion and adherence, making dentin disinfection a challenging step (Fig. 5.2).
Dentin Constituents The effectiveness of antimicrobial irrigants is known to be compromised under in vivo conditions [77]. In recent studies it has been reported that dentin powder, serum albumin, and dentin matrix can inhibit the antibacterial effect of commonly used irrigants [29, 66, 67]. Interestingly, it has been also reported that even the antibacterial effect of advance disinfection techniques like chitosan nanoparticles and photoactivation disinfection can also be neutralized by the dentin constituents [77].
The microbiological challenge is well covered in Chap. 1. It is important to understand that the endodontic problem is a bioÞlm-related diseases and access, disruption, or penetration of the bioÞlm should be our disinfection aim [43].
Endodontic irrigants have three major objectives: chemical, biological, and mechanical. Mechanical objectives include to rinse out debris and lubricate the canal; chemical objectives include to soften and dissolve organic and inorganic tissues, prevent the formation of a smear layer during instrumentation, and dissolve smear layer once it has formed; and biological objec-