Добавил:
Здесь собраны файлы для СФ и общие дисциплины других факультетов. Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Ответы к экзамену 6

.pdf
Скачиваний:
2
Добавлен:
30.08.2025
Размер:
13.02 Mб
Скачать

чем глубже дыхание, тем больше эластическое сопротивление. Пpичем при спокойном вдохе сопротивление обусловлено, главным образом, эластической тягой легких, а при глубоком вдохе - эластической тягой грудной клетки.

Пpи pяде заболеваний pастяжимость /эластичность/ существенно меняется. Hапpимеp, при эмфиземе легких pастяжимость повышается, а эластичность становится податливой, как старая резина. Для вдоха это благоприятно, а для выдоха - нет, т.к. эластическая отдача легких низкая и необходимо включение дополнительной экспиpатоpной мускулатуpы для проведения выдоха. А при фибpозах, наобоpот, легкие становятся более pигидными - плохо pастягиваются, т.е. пpи фибpозах акт вдоха затруднен, а акт выдоха облегчен.

Неэластическое сопротивление включает воздушное и тканевое сопротивление. Неэластическое сопpотивление (pезистивное) обусловлено:

1)аэродинамическим сопротивлением всех перемещающихся при дыхании тканей;

2)динамическим сопpотивлением всех пеpемещающихся пpи дыхании тканей;

3)инеpционным сопpотивлением пеpемещающихся тканей.

Основной фактоp — аэpодинамическое сопpотивление. Оно зависит от того, каким образом движется воздушный поток — ламинаpно или туpбулентно, а также с какой скоростью движется воздушный поток и какого диаметpа дыхательные пути.

Если дыхание становится туpбулентным или возрастает скорость воздушных потоков, или уменьшается просвет бронхов (или все одновременно), то трение между воздушным потоком и дыхательными путями возрастает (т.е. сопротивление возрастает). Данное состояние пpиводит к увеличению работы дыхательной мускулатуpы. Особенно, это хаpактеpно для бpонхиальной астмы. Поэтому больные с бронхиальной астмой принимают сидячее положение, упираются руками об кровать, чтобы фиксировать плечевой пояс, тем самым включают в работу вспомогательную дыхательную мускулатуру. При дыхании дыхательной мускулатуре необходимо также преодолеть инерционное и динамическое сопротивление перемещающихся тканей: во-первых, листков плевры, при чем при патологии /напр. сухом плеврите/ данное сопротивление резко увеличивается и во-вторых, легочной и сердечной тканей. Т.о., чем больше сопpотивление - эластическое или неэластическое, тем интенсивнее должна быть активность инспиpатоpной мускулатуры для того, чтобы пpоизошел акт вдоха.

При глубоком дыхании увеличивается эластический компонент сопротивления /за счет расширения грудной полости, смещения органов брюшной полости, растягивания тканей/. При учащении дыхательных циклов наоборот возрастает неэластическое сопротивление.

Во время вдоха просвет бронхов и голосовая щель расширяются, а на выдохе — сужаются. Сопротивление потоку воздуха при этом увеличивается. Это служит одной из причин большей длительности экспираторной фазы.

Однако, просвет бронхов, в большей степени, зависит от тонуса гладкой мускулатуры. Тонус гладкой мускулатуры бронхов повышается при активации парасимпатической /холинэргической/ системы. Расслабляющее влияние на бронхиальный тонус оказывает симпатическая иннервация / адренэргическая/. Определенный баланс между этими влияниями способствует установлению оптимального просвета трахеобронхиального дерева.

Нарушение регуляции бронхиального тонуса у человека составляет основу бронхоспазма, в результате которого резко уменьшается проходимость воздухоносных путей /обструкция/ и повышается сопротивление дыханию. Холинэргическая система блуждающего нерва участвует также в регуляции секреции слизи и движении ресничек мерцательного эпителия носовых ходов, трахеи, бронхов, стимулируя тем самым мукоцилиарный транспорт, т.е. удаление попавших в воздухоносные пути инородных частиц. Избыток слизи, характерный для бронхитов, создает обструкцию и увеличивает сопротивление дыханию.

18. Легочные объемы и емкости воздуха.

Легочные объемы:

1.Дыхательный объем (ДО) - это объем воздуха, который человек спокойно вдыхает после спокойного выдоха. В покое он составляет в среднем 20% от ЖЕЛ.

2.Резервный объем вдоха (РОвд) - воздух, который пациент может дополнительно вдохнуть, после спокойного вдоха.

3. Резервный объем выдоха (РОвд) - воздух, который пациент может максимально выдохнуть после спокойного выдоха.

Объем мертвого пространства (ОМП) - это воздух, находящийся в носоглотке, трахее и бронхах и не участвующий в газообмене. Это анатомическое мертвое пространство. Этот объем не доходит до альвеол и не обменивается кислородом с кровью. ОМП у взрослого составляет в среднем 140-150 мл. Чем больше этот объем, тем менее эффективно дыхание. Есть понятиефизиологического мертвого пространства - к нему относятся не только воздухоносные пути, но и альвеолы, которые не кровоснабжаются (альвеолярное мертвое пространство).

Легочная емкость:

Общая емкость легких (ОЕЛ) - количество воздуха, находящееся в легких после глубокого вдоха.ОЕЛ колеблется в больших пределах (от 0,5 до 8 литров) и зависит от роста, возраста, пола, состояния легких и грудной клетки.

ОЕЛ состоит из 2 частей:

-жизненная емкость легких (ЖЕЛ) - объем, который человек может выдохнуть при глубоком выдохе после глубокого вдоха, ЖЕЛ = ОЕЛ — остаточный объем легких. ЖЕЛ составляет у мужчин 3,5 — 5,0 л,

у женщин — 3,0 —4,0 л;

-остаточный объем (ОО) - объем воздуха, который остается в дыхательной системе даже после глубокого выдоха. Увеличение ОО снижает эффективность дыхания. Делится на коллапсный объем(выходит при спадении легкого) и минимальный объем (истинный остаточный).

Сумма ДО и РОвдполучила название емкость вдоха (ЕВд). Составляет в среднем 2,0 — 2,5 л;

Сумма ОО и РОвыд получила название функциональной остаточной емкости (ФОЕ). Величина ФОЕ отражает эффективность дыхания. Объем воздуха в легких после спокойного выдоха. В легких при спокойном вдохе и выдохе постоянно содержится примерно 2500 мл воздуха, заполняющего альвеолы и нижние дыхательные пути. Благодаря этому газовый состав альвеолярного воздуха сохраняется на постоянном уровне.

19. Альвеолярная вентиляция легких. Диффузия газов.

Газовая смесь, поступившая в легкие при вдохе, распределяется на две части. Одна из них не принимает участие в газообмене, т.к. заполняет воздухоносные пути (анатомически мертвое пространство). Другая часть (альвеолярный объем) поступает в респираторный отдел (альвеолярные протоки, мешочки и альвеолы), где принимает участие в газообмене. Она обеспечивает вентиляцию альвеолярного

пространства.

Особенности альвеолярной вентиляции:

-интенсивность обновления газового состава, определяемая соотношением альвеолярного объема и альвеолярной вентиляции.

-изменения альвеолярного объема (увеличение/уменьшение размера вентилируемых альвеол, либо изменение кол-ва альвеол, участвующих в вентиляции).

-различия внутрилегочных характеристик сопротивления и эластичности, приводящее к асинхронности альвеолярной вентиляции.

-поток газов в альвеолу или из нее определяется механическими характеристиками легких и дыхательных путей, а также силами (или давлением), воздействующими на них. Механические характеристики обусловлены сопротивлением дыхательных путей потоку воздуха и эластическими св-ва легочной паренхимы.

Размеры альвеолярного пространства таковы, что смешивание газов в альвеолярной единице происходит практически мгновенно как следствие дыхательных движений, кровотока и диффузии. Неравномерность альвеолярной вентиляции обусловлена и гравитационным фактором-разницей транспульмонального давления в верхних и нижних отделах грудной клетки. В вертикальном положении в нижних отделах это давление выше примерно на 8 см.вод.ст. Апико-базальный градиент всегда присутствует независимо от степени наполнения легких→определяет наполнение воздухом альвеол в разных отделах легких.

Внорме вдыхаемый газ смешивается мгновенно с альвеолярным газом. Состав газа в альвеолах практически гомогенен в любую респираторную фазу и в любой момент вентиляции.

Любое повышение альвеолярного транспорта кислорода и углекислого газа (напр. при физических нагрузках) сопровождается повышение градиентов концентрации газов, которые способствуют возрастанию их смешивания в альвеолах. Нагрузка стимулирует альвеолярное смешивание путем повышения потока вдыхаемого воздуха и возрастания кровотока, повышает альвеолярно-капиллярный градиент давления для кислорода и углекислого газа.

Диффузия газов.

Газообмен — совокупность процессов, обеспечивающих переход кислорода внешней среды в ткани живого организма, а углекислого газа из тканей во внешнюю среду.

Перемещение газов осуществляется под влиянием разности парциальных давлений и напряжений этих газов в каждой из сред организма.

Парциальное давление кислорода в воздухе, заполняющем альвеолы легких, около 100 мм рт. ст., а его напряжение в венозной крови, притекающей к легким, около 40 мм рт. ст. Вследствие разности давлений кислород из альвеол направляется в кровь, где связывается с гемоглобином эритроцитов. Парциальное давление углекислого газа в альвеолярном воздухе составляет 40 мм рт. ст., а его напряжение в притекающей к легким венозной крови — 48 мм рт. ст. Вследствие разности давлений углекислый газ переходит в альвеолы.

Вартериальной крови, притекающей к тканям, напряжение кислорода выше, чем в тканях, а напряжение углекислого газа, наоборот, значительно ниже. Вследствие этого кислород переходит из крови в ткани и включается в цикл метаболических процессов, а углекислый газ, в избытке содержащийся в тканях, переходит в кровь и переносится затем в лёгкие. Процесс газообмена происходит непрерывно до тех пор, пока существует разность парциальных давлений и напряжений газов в каждой из сред, участвующих в газообмене решающим фактором, обусловливающим непрерывность газообмена, является постоянство газового состава альвеолярного воздуха.

Величина газообмена является показателем интенсивности окислительных процессов, протекающих в тканях. Об уровне газообмена можно судить и по величине минутной вентиляции легких. При спокойном дыхании через легкие проходит около 8000 мл воздуха в 1 мин. При физических и эмоциональных напряжениях, различных заболеваниях, сопровождающихся усилением окислительных процессов в тканях, легочная вентиляция возрастает.

Вентиляционно-перфузионные отношения в разных отделах легкого.

Кровоток в капиллярах легких и легочная вентиляция неодинаковы в различных отделах и зависят от положения тела.

Основное влияние на распределение перфузии в легких оказывает гравитация, что обусловлено низким АД в системе малого круга кровообращения (15-20 мм рт. ст.). Поэтому при любом положении тела в пространстве нижние отделы легких по сравнению с верхними будут иметь больший кровоток. Зависимость перфузии от сил гравитации более выражена, чем у вентиляции, что определяет и характер изменения вентиляционно-перфузионных отношений по направлению от верхушек к основанию легких. Нормальная альвеолярная вентиляция (VA) у взрослых составляет ~ 4 л/мин, а общая легочная перфузия

(Q) ~ 5 л/мин. Следовательно, отношение величин вентиляции и перфузии будет равно 4/5, или 0,8. Изменение отношения YA /Q будет отражать степень гипервентиляции (гипоперфузии) или гиперперфузии (гиповентиляции) в целом легком или в его отдельных зонах.

Распределение вентиляции зависит от нескольких факторов. Основным является растяжимость легочной ткани, которая неодинакова в различных легочных зонах.

20. Транспорт кислорода и углекислого газа. Кривая диссоциации оксигемоглобина.

Транспорт кислорода кровью. Кривая диссоциации оксигемоглобина.

О2 переносится к тканям в двух формах: связанный с гемоглобином и растворенный в плазме. В крови содержится лишь незначительное количество О2, растворимого в плазме. Согласно закону Генри, количество газа, растворенного в жид¬ кости, прямо пропорционально его парциальному давлению и коэффи¬ циенту растворимости. Растворимость О2 в плазме крови низка: при РО2 = = 1 мм рт.ст. в 100 мл крови растворяется 0,0031 мл О2

При нормальных физиологических условиях (РаО2 = 100 мм рт.ст.) в 100 мл крови растворяется 0,31 мл О2, т.е. 0,31 об.%. Такое количество О2 не обеспечивает потребности организма, поэтому основное значение име¬ ет другой способ переноса — в виде связи с гемоглобином внутри эритро¬ цита. Гемоглобин является основным протеином эритроцитов. Главной функцией гемоглобина является транспорт О2 от легких к тканям и транс¬ порт СО2 от тканей к легким. Каждая молекула гемоглобина человека со¬ стоит из белка глобина и гема. Основной глобин взрослых — НЬА являет¬ ся тетрамером, состоящим из двух полипептидных цепей а и двух поли¬ пептидных цепей р. В спиральную структуру каждой полипептидной цепи глобина встроен гем, который является комплексным соединением двух¬ валентного иона железа Fe2+ и порфирина. Ион железа гема способен присоединять одну молекулу О2, т.е. одна молекула гемоглобина способна связать 4 молекулы О2 Следует особо подчеркнуть уникальные особенно¬ сти иона Fe2+ тема обратимо связывать молекулу О2 НЬ + О2 <-> НЬО2, в то время как обычно при реакции изолированного Fe2+ и кислорода обра¬ зуется Fe3+. Окисленный ион Fe3+ не способен высвобождать О2, т.е. об¬ разуется необратимая связь, а связь иона Fe2+ тема с О2 происходит за счет конформационных изменений третичной и четвертичной структуры глобина, она обратима, т.е. в тканях происходит высвобождение О2 Гемоглобин, связанный с четырьмя молекулами О2, называется оксигемоглобином, а гемоглобин, не содержащий О2или менее четырех молекул О2, — деоксигенированным гемоглобином. 1 г гемоглобина способен максимально связать 1,34 мл О2 Учитывая, что нормальное содержание гемоглобина составляет 15 г/100 мл, можно рассчитать, что в 100 мл крови максимально может содержаться 20.1 мл О2 связанного с гемоглобином. Данная величина называется кислородной емкостью крови (КЕК):

Наиболее важным параметром, определяющим количество кислорода, связанного с гемоглобином, является насыщение гемоглобина кислоро¬ дом — сатурация (SаО2), который рассчитывают по формуле:

При РаO2, равном 100 мм рт.ст., насыщение гемоглобина кислородом артериальной крови составляет около 97 %. В венозной крови (РО2 = 40 мм рт.ст.) SaO2 приблизительно равна 75 %.

Кривая диссоциации оксигемоглобина Зависимость насыщения гемоглобина О2 от парциального напряжения О2 может быть представлена графически в виде кривой диссоциации окси¬ гемоглобина. Кривая имеет сигмовидную форму, при этом нижняя часть кривой (РаО2< 60 мм рт.ст.) имеет крутой наклон, а верхняя часть (РаО2 > 60 мм рт.ст.) относительно пологая. Нижний участок кривой диссоциа¬ ции оксигемоглобина показывает, что при снижении РаО2 продолжается насыщение гемоглобина кислородом,т.е. ткани продолжают извлекать до¬ статочное количество О2 из крови. Верхняя пологая часть кривой демонст¬ рирует относительное постоянство насыщения гемоглобина кислородом, а следовательно, и содержания кислорода в крови независимо от изменений РаО2 (рис. 7.9).

Положение кривой диссоциации оксигемоглобина зависит от сродства гемоглобина с кислородом. При снижении сродства гемоглобина к О2, т.е. облегчении перехода О2 в ткани, кривая сдвигается вправо. Повышение сродства гемоглобина к О2 означает меньшее высвобождение кислорода в тканях, при этом кривая диссоциации сдвигается влево. Важным показате¬ лем, отражающем сдвиги кривой диссоциации оксигемоглобина, является параметр Р50, т.е. такое РО2, при котором гемоглобин насыщен кислоро¬ дом на 50 % (см. рис. 7.9). В нормальных условиях у человека (при t 37 °С, рН 7,40 и РаСО2= 40 мм рт.ст.) Р5о - 27 мм рт.ст. При сдвиге кривой дис¬ социации вправо Р50 увеличивается, а при сдвиге влево — снижается. На сродство гемоглобина к О2оказывают влияние большое количество метаболических факторов, к числу которых относятся рН, РСО2 темпера¬ тура, концентрация в эритроцитах 2,3-дифосфоглицерата (2,3-ДФГ). Сни¬ жение рН, повышение РСО2 и температуры снижают сродство гемоглоби¬ на к О2 и смещению кривой вправо. Такие метаболические условия созда¬ ются в работающих мышцах, и такой сдвиг кривой является физиологиче¬ ски выгодным, так как повышенное высвобождение О2необходимо для активной мышечной работы. В противоположность

этому повышение рН, снижение температуры и снижение РСО2(такие условиях создаются в лег¬ ких) смещают кривую диссоциации оксигемоглобина влево (рис. 7.10).

Влияние рН и РаСО2 на кривую диссоциации называется эффектом Бора. 2,3-ДФГ образуется в эритроцитах в процессе гликолиза и выполняет функцию главного энергетического субстрата (в эритроцитах отсутствуют митохондрии, поэтому не происходят реакции окислительного фосфорилирования, и АТФ не имеет большого значения как источник энергии). В условиях продолжительной гипоксии увеличивается содержание 2,3-ДФГ в эритроцитах, что приводит к снижению сродства гемоглобина к O2 и более интенсивному переходу его из крови в ткани. Снижение концентра¬ ции 2,3-ДФГ в эритроцитах приводит к сдвигу кривой диссоциации влево. На кривую диссоциации оксигемоглобина может оказать влияние и окись углерода (СО). СО имеет сродство к гемоглобину в 240 раз выше, чем О2, и, связываясь с гемоглобином, образует карбоксигемоглобин (НЬСО). При этом даже небольшие количества СО могут связать большую часть НЬ крови и значительно уменьшить содержание О2 крови. Кроме того, СО сдвигает кривую диссоциации влево, что препятствует высвобож¬ дению О2 в тканях и также усугубляет гипоксию. Еще одним фактором, влияющим на сродство НЬ к кислороду, является метгемоглобин — гемоглобин, содержащий железо, окисленное до Fе3+. У здорового человека общее содержание метгемоглобина не превышает 3 %, однако при приеме некоторых лекарств (например, фенацетин, суль¬ фаниламиды, нитроглицерин) и дефиците фермента метгемоглобин-редуктазы происходит образование значительных количеств метгемоглобина. Метгемоглобинемия вызывает смещение кривой диссоциации влево, т.е препятствует высвобождению в тканях, а при повышении концентрации метгемоглобина более 60 % происходит также и уменьшение нормального НЬ, что приводит к тяжелой гипоксии.

Транспорт углекислого газа кровью.

Углекислый газ является конечным продуктом клеточного метаболизма. СО2 образуется в тканях, диффундирует в кровь и переносится кровью к легким в трех формах: растворенной в плазме, в составе бикарбоната и в виде карбаминовых соединений эритроцитов. Количество СОг, растворимого в плазме, как и для О2 определяется за¬ коном Генри, однако его растворимость в 20 раз выше, поэтому количест¬ во растворенного СО2 довольно значительно и составляет до 5—10 % от общего количества

СО2крови. Реакция образования бикарбоната описывается следующей формулой:

СО2 + Н2О <-> Н2СО3<-» Н+ + HCO3-.

Первая реакция протекает медленно в плазме и быстро — в эритроцитах, что связано с содержанием в клетках фермента карбоангидразы. Вторая ре¬ акция — диссоциация угольной кислоты — протекает быстро, без участия ферментов. При повышении в эритроците ионов HCO3происходит их диффузия в кровь через клеточную мембрану, в то время как для ионов Н+ мембрана эритроцита относительно непроницаема и они остаются внутри клетки. Поэтому для обеспечения электронейтральности клетки в нее из плазмы входят ионы СГ (так называемый хлоридный сдвиг) (рис. 7.11). Высвобождающиеся ионы Н+ связываются с гемоглобином: Н+ + НЬО2 <-> Н+ • НЬ + O2.

Восстановленный гемоглобин является более слабой кислотой, чем оксигемоглобин. Таким образом, наличие восстановленного НЬ в венозной крови способствует связыванию СО2, тогда как окисление НЬ в сосудах легких облегчает его высвобождение. Такое повышение сродства СО2 к ге¬ моглобину называется эффектом Холдейна. На долю бикарбоната прихо¬ дится до 90 % всего СОг, транспортируемого кровью. Карбаминовые соединения образуются в результате связывания СО2 с концевыми группами аминокислот белков крови, важнейшим из которых является гемоглобин (его глобиновая часть): НЬ • NH2 + СО2 ----- НЬ • NH • СООН. В ходе этой реакции образуется карбаминогемоглобин. Реакция протека¬ ет быстро и не требует участия ферментов. Как и в случае с ионами Н+, вос¬ становленный НЬ обладает большим сродством к СО2, чем оксигемоглобин.

Поэтому деоксигенированный гемоглобин облегчает связывание СО2 в тка¬ нях, а соединение НЬ с О2 способствует высвобождению СО2. В виде карбаминовых соединений содержится до 5 % общего количества СО2 крови. Кривая диссоциации СО2 — гемоглобин значительно отличается от кривой диссоциации оксигемоглобина — она более линейна (рис. 7.12). Концентрация СО2 при любой величине РСО2 зависит от степени насы¬ щения гемоглобина кислородом: чем выше насыщение, тем меньше кон¬ центрация СО2 (эффект Холдейна). Определение парциального напряжения О2 и СО2 крови проводится при помощи автоматических газоанализаторов, использующих для каждого из измеряемых газов специальный электрод.

21.Дыхательный центр продолговатого мозга, его функции. Локализация и функциональные свойства дыхательных нейронов продолговатого мозга.

Ритмическая последовательность вдоха и выдоха, а также изменение характера дыхательных движений в зависимости от состояния организма (покой, работа различной интенсивности, эмоциональные проявления и т. д.) регулируются дыхательным центром, расположенным в продолговатом мозге. Дыхательным центром называется совокупность нейронов, обеспечивающих деятельность аппарата дыхания и его приспособление к изменяющимся условиям внешней и внутренней среды.

В дыхательном центре имеются две группы нейронов: инспираторные и экспираторные. Обнаружены некоторые особенности в работе дыхательного центра. При спокойном дыхании активна только небольшая часть дыхательных нейронов, и, следовательно, в дыхательном центре есть резерв нейронов, который используется при повышенной потребности организма в кислороде. Установлено, что между инспираторными и экспираторными нейронами дыхательного центра существуют функциональные взаимосвязи. Они выражаются в том, что при возбуждении инспираторных нейронов, обеспечивающих вдох, деятельность экспираторных нервных клеток заторможена, и наоборот. Таким образом, одной из причин ритмичной, автоматической деятельности дыхательного центра являются взаимосвязанные функциональные отношения между этими группами нейронов.

Дыхательный центр, расположенный в продолговатом мозге, посылает импульсы к мотонейронам спинного мозга, иннервирующим дыхательные мышцы. Диафрагма иннервируется аксонами мотонейронов, расположенных на уровне III—IV шейных сегментов спинного мозга. Мотонейроны, отростки которых образуют межреберные нервы, иннервирующие межреберные мышцы, расположены в передних рогах (III—XII) грудных сегментов спинного мозга.

Регуляция деятельности дыхательного центра

Механизм первого вдоха новорожденного. В организме матери газообмен плода происходит через пупочные сосуды, тесно контактирующие с плацентарной кровью матери. После рождения ребенка и отделения плаценты указанная связь нарушается. Метаболические процессы в организме новорожденного приводят к образованию и накоплению углекислого газа, который, так же как и недостаток кислорода, гуморально возбуждает дыхательный центр. Кроме того, изменение условий существования ребенка приводит к возбуждению экстеро- и проприорецепторов, что также является

одним из механизмов, принимающих участие в осуществлении первого вдоха новорожденного.

Влияние клеток коры большого мозга на активность дыхательного центра.

Учащение и углубление дыхания, которые наступают до начала физической работы или спортивных состязаний, осуществляются по механизму условных рефлексов. Эти изменения в дыхательных движениях отражают сдвиги в активности дыхательного центра и имеют приспособительное значение, способствуя подготовке организма к выполнению работы, требующей большой затраты энергии и усиления окислительных процессов.

По мнению М.Е. Маршака, корковая регуляция дыхания обеспечивает необходимый уровень легочной вентиляции, темп и ритм дыхания, постоянство уровня углекислого газа в альвеолярном воздухе и артериальной крови.

По М.В. Сергиевскому, регуляция активности дыхательного центра представлена тремя уровнями.

Первый уровень регуляции — спинной мозг. Здесь располагаются центры диафрагмальных и межреберных нервов, обусловливающие сокращение дыхательных мышц.

Второй уровень регуляции — продолговатый мозг. Здесь находится дыхательный центр, который перерабатывает разнообразные афферентные импульсы, идущие от дыхательного аппарата, а также от основных рефлексогенных сосудистых зон

Третий уровень регуляции — верхние отделы головного мозга, включающие и корковые нейроны. Только при участии коры большого мозга возможно адекватное приспособление реакций системы дыхания к изменяющимся условиям окружающей среды.

Локализация и функциональные свойства дыхательных нейронов продолговатого мозга.

Нейроны дыхательного центра локализованы в дорсомедиальной и вентролатеральной областях продолговатого мозга и образуют так называемые дорсальную и вентральную дыхательную группу.

Дыхательные нейроны, активность которых вызывает инспирацию или экспирацию, называются соответственно инспираторными и экспираторными нейронами. Инспираторные и экспираторные нейроны иннервируют дыхательные мышцы. В дорсальной и вентральной дыхательной группах продолговатого мозга обнаружены следующие основные типы дыхательных нейронов: 1) ранние инспираторные, которые разряжаются с максимальной частотой в начале фазы вдоха; 2) поздние инспираторные, максимальная частота разрядов которых приходится на конец инспирации; 3) полные инспираторные с постоянной или постепенно нарастающей активностью в течение фазы вдоха; 4) постинспираторные, которые имеют максимальный разряд в начале фазы выдоха; 5) экспираторные с постоянной или постепенно нарастающей активностью, которую они проявляют во вторую часть фазы выдоха; 6) преинспираторные, которые имеют максимальный пик активности непосредственно перед началом вдоха. Тип нейронов определяется по проявлению его активности относительно фазы вдоха и выдоха.

22.Дыхательные нейроны спинного мозга и варолиевого моста, их роль в регуляции вентиляции легких.

Вмосту находятся два ядра дыхательных нейронов: медиальное парабрахиальное ядро и ядро Келликера—Фюзе. Иногда эти ядра называют пневмотаксинеским центром. В первом ядре находятся преимущественно инспираторные, экспираторные, а также фазовопереходные нейроны, а во втором — инспираторные нейроны. Предполагают, что дыхательные нейроны моста регулируют смену фаз дыхания и скорость дыхательных движений. В сочетании с двусторонней перерезкой блуждающих

нервов разрушение указанных ядер вызывает остановку дыхания на вдохе.

Диафрагмальные мотонейроны своими аксонами образуют диафрагмальный нерв. Нейроны расположены узким столбом в медиальной части вентральных рогов от С3 до С4. Диафрагмальный нерв состоит из 700—800 миелиновых и более 1500 безмиелиновых волокон. Подавляющее количество волокон является аксонами а-мотонейронов, а меньшая часть представлена афферентными волокнами мышечных и сухожильных веретен, локализованных в диафрагме, а также рецепторов плевры, брюшины и свободных нервных окончаний самой диафрагмы.

Мотонейроны сегментов спинного мозга, иннервирующие дыхательные мышцы. На уровне С1—С2

вблизи латерального края промежуточной зоны серого вещества находятся инспираторные нейроны, которые участвуют в регуляции активности межреберных и диафрагмальных мотонейронов (см. рис. 7.14).

Мотонейроны, иннервирующие межреберные мышцы, локализованы в сером веществе передних рогов на уровне от Тh4 до Тh10.

Мотонейроны, иннервирующие мышцы брюшной стенки, локализованы в пределах вентральных рогов спинного мозга на уровне Th4-L3.

23.Генерация дыхательного ритма. Классификация инспираторных и экспираторных нейронов дыхательного центра продолговатого мозга.

Ритмическое сокращение и расслабление дыхательных мышц обеспечивается циркуляцией возбуждения в дыхательных нейронах продолговатого мозга, а также взаимодействием импульсации нейронов продолговатого мозга с импульсацией дыхательных нейронов моста. Дыхательный цикл подразделяют на фазу вдоха и фазу выдоха относительно движения воздуха из атмосферы в сторону альвеол (вдох) и обратно (выдох). Двум фазам внешнего дыхания соответствуют три фазы активности нейронов дыхательного центра продолговатого мозга: инспираторная, которая соответствует вдоху; постинспираторная, которая соответствует первой половине выдоха и называется пассивной контролируемой экспирацией; экспираторная, которая соответствует второй половине фазы выдоха и называется фазой активной экспирации (рис. 24).

Дыхательный цикл начинается с возбуждения ранних инспираторных нейронов, которые полностью освобождаются от сильного торможения со стороны постинспираторных нейронов. Полное растормаживание ранних инспираторных нейронов происходит в момент, когда активируются преинспираторные нейроны дыхательного центра, которые окончательно блокируют разряд экспираторных нейронов. Далее возбуждение переходит на полные инспираторные нейроны, которые способны совозбуждать друг друга. Полные инспираторные нейроны, благодаря этому свойству, поддерживают и увеличивают частоту генерации потенциалов действия в течение фазы вдоха. Именно этот тип дыхательных нейронов создает нарастающую активность в диафрагмальном и межреберных нервах, вызывая увеличение силы сокращения диафрагмы и наружных межреберных мышц.

Ранние инспираторные нейроны в силу особых физиологических свойств их мембраны прекращают генерировать потенциалы действия к середине фазы вдоха. Это моносинаптически растормаживает поздние инспираторные нейроны, поэтому их активность появляется в конце вдоха.

Поздние инспираторные нейроны способны дополнительно активировать в конце вдоха сокращение диафрагмы и наружных межреберных мышц. Одновременно поздние инспираторные нейроны выполняют функцию начального выключения инспирации. В период своей активности они получают возбуждающие стимулы от легочных рецепторов растяжения, которые измеряют степень растяжения дыхательных путей во время вдоха. Максимальный по частоте разряд поздних инспираторных нейронов