
- •1. Выпуклые множества: определение,выпуклая линейная комбинация и ее свойства, пересечение множеств,типы множеств, внутренние и граничные точки.
- •Выпуклая функция (выпуклая вниз)
- •Вогнутая функция (выпуклая вверх)
- •Выпуклое множество
- •Выпуклая линейная комбинация
- •Свойства
- •Множества
- •2. Выпуклые множества:крайняя точка,гиперплоскость,теорема о разделяющей гиперплоскости,опорная гиперплоскость,выпуклая оболочка.
- •Гиперплоскость
- •Теорема о разделяющей гиперплоскости
- •Опорная гиперплоскость
- •Выпуклая оболочка
- •3. Выпуклые функции:определения,свойство линейной формы,свойство суммы выпуклых функций,признак выпуклости диффеpенциpуемой функции.
- •Выпуклая функция (выпуклая вниз)
- •Выпуклая функция (выпуклая вверх)
- •Свойство линейной формы
- •Свойство суммы выпуклых функций
- •Признак выпуклости дифференцируемой функции
- •4. Выпуклые функции:свойство выпуклости области определения выпуклых функций, свойство глобальности минимума выпуклой функции.
- •Свойство выпуклости области определения выпуклых функций
- •Свойство глобальности минимума выпуклой функции.
- •5. Постановка задачи оптимизации.Классы оптимизационных задач:задачи безусловной оптимизации,условной оптимизации,классические на условный экстpемум, выпуклые задачи оптимизации,задачи математического пpогpаммиpования.
- •Постановка задачи
- •Задача безусловной оптимизации
- •Задача условной оптимизации
- •Выпуклая задача оптимизации
- •Математическая задача оптимизации
- •Задача линейного программирования
- •Квадратичное программирование
- •7. Условия экстремума одномерных функций без ограничений.
- •9. Классическая задача условной оптимизации,метод неопределенных множителей Лагранжа. (необходимые условия экстремума)
- •Классическая задача условной оптимизации
- •10. Геометрическая интеpпpетация множителей и метода Лагранжа,достаточные условия экстремума,седловые точки,решение задач с ограничениями - неравенствами классическим методом Лагранжа.
- •11. Понятие о численных методах оптимизации.
- •Определение
- •Основные понятия
- •Классификация численных методов
- •Одномерный пассивный поиск
- •Унимодальность
- •Интервал неопределенности
- •Принцип минимакса
- •13. Принцип минимакса,постановка экспериментов пpи пассивном поиске,метод дихотомии, эвристический алгоритм Свенна (наушники).
- •Принцип минимакса
- •14. Метод Фибоначчи,метод золотого сечения.
- •Метод золотого сечения
- •Метод Фибоначчи
- •Алгоритм Фибоначчи
- •15. Метод золотого сечения,методы оценивания с использованием квадратичной аппроксимации.
- •Методы оценивания с использованием квадратичной аппроксимации ((оцениваем местонахождение точки ))
- •16. Метод средней точки,метод касательных,метод секущих.
- •Метод средней точки
- •17. Метод поиска по симплексу.
- •18. Метод поиска Хука-Дживса.
- •19. Метод сопряженных направлений Пауэлла.
- •20. Градиентные методы:с постоянным шагом,с дроблением шага.
- •Градиентный метод c дроблением шага
- •21. Метод наискорейшего спуска,метод покооpдинатного спуска,сходимость гpадиентных методов.
- •Cходимость гpадиентных методов
- •22. Градиентный метод с масштабированием переменных.
- •23. Эвристические схемы градиентного метода.
- •26. Теорема Куна-Таккера,доказательство достаточности (без доказательства).
- •Теорема Куна–Таккера
- •27. Теорема Куна-Таккера,доказательство необходимости (без доказательства).
- •Теорема Куна–Таккера
- •28. Развитие и обобщение метода Лагpанжа,общая теоpема математического пpогpаммиpования.
- •29. Общая теорема математического пpогpаммиpования,условия оптимальности для задач квадратичного пpогpаммиpования.
- •30. Метод (де)Била.
- •Полный алгоритм метода Била
- •31. Условия оптимальности для задач квадратичного пpогpаммиpования. Метод Вулфа.
- •Метод Вулфа
- •32. Метод кусочно-линейной аппроксимации.
- •33. Метод проекции градиента.
- •34. Метод возможных направлений.
- •Алгоритм
- •35. Методы штрафных функций.
- •36. Постановка общей задачи линейного пpогpаммиpования,пpимеpы задач.
- •Определение
- •Пример задачи
- •37. Свойства pешений задач линейного пpогpаммиpования.
- •Теорема о существовании вершин многогранного множества
- •Теорема о существовании опрного плана
- •Теорема о существовании опорного решения
- •Теорема о разрешимости задачи линейного программирования
- •38. Двойственные задачи линейного программирования и их свойства.
- •39. Идея метода последовательного улучшения плана,признак оптимальности.
- •40. Алгебраическое обоснование метода последовательного улучшения плана.
- •41. Метод искусственного базиса.
- •Определение
- •Определение
- •Метод
- •49. Метод Форда-Фалкерсона для решения задачи о максимальном потоке в сети.
- •Определение (постановка задачи)
- •Алгоритм (Форда-Фалкерсона)
- •50. Линейная сетевая задача,метод потенциалов для ее решения.
- •Линейная сетевая задача
- •Метод потенциалов
- •51. Жордановы исключения. Геометрический метод pешения задач линейного пpогpаммиpования.
- •52. Задачи оптимального упpавления.Пpинцип оптимальности динамического пpогpаммиpования.
- •53. Метод динамического пpогpаммиpования для дискретных систем.
- •54. Метод динамического пpогpаммиpования для непpеpывных систем.
- •55. Решение задач pаспpеделения pесуpсов методом динамического пpогpаммиpования.

15. Метод золотого сечения,методы оценивания с использованием квадратичной аппроксимации.
Методы оценивания с использованием квадратичной аппроксимации ((оцениваем местонахождение точки
))
должна быть непрерывной унимодальной и достаточно гладкой.
Выбираем точки эксперимента вычисляем функции в этих точках исходную функцию заменим на
Оценка точки :
Скорость сходимости – суперлинейная.
16. Метод средней точки,метод касательных,метод секущих.
Метод средней точки
https://vuzlit.com/895112/metod_sredney_tochki Пиздец машинный перевод аки гта са
Пусть - унимодальная, непрерывно дифференцируемая на отрезке
функция и на этом отрезке точка x* является единственной стационарной точкой. Сведем задачу нахождения минимума функции f(x) к решению нелинейного уравнения
. (1.14)
Положим
Так как функция удовлетворяет условию (1.14), то она принимает на концах отрезка
значения разных знаков, т.е.

.
Разделим отрезок пополам. Получим точку
. Вычислим
. Если
, то
-
искомый корень, и задача решена. Если не равно 0, то
- число определенного знака:
, либо
. Тогда либо на концах отрезка
, либо на концах отрезка
значения функции f '(x) имеют разные знаки. Обозначим такой отрезок
]. Очевидно,
что , и длина отрезка
в два раза меньше, чем длина отрезка
. Поступим аналогично с отрезком
. В результате получим либо корень
, либо новый отрезок
, и т.д. (рис.1.4 ).
Рис. 1.4
Середина n-го отрезка . Очевидно, что длина отрезка
будет равна , а т. к.
, то
. (1.15)
Оценка (1.15) характеризует погрешность метода средней точки и указывает на скорость сходимости: метод сходится со скоростью геометрической прогрессии, знаменатель которой
.
Если задана требуемая точность , то процесс вычислений следует закончить, когда
выполнится условие , после чего полагают
.
Алгоритм 1.5 (Алгоритм метода средней точки).
Шаг 1. Ввести исходные данные: a, b, .

Шаг 2. Определить .
Шаг 3. Вычислить .
Шаг 4. Проверить критерий окончания вычислений. Если , , перейти к шагу 6, иначе - к шагу 5.
Шаг 5. Перейти к новому отрезку локализации . Если
, то положить
. Иначе положить
. Перейти к шагу 2.
Шаг 6. Положить . Вычислить
.
Реализация в пакете MathCAD 14 КРУТО
В итоге получаем f(x*) = -3.749, x*=0.382 с точностью за 15 итераций.