
- •Введение
- •Определение мжг(Механика жидкости и газа )(гидравлики) как науки и связь ее с другими дисциплинами.
- •Основные физические свойства жидкостей ( плотность ,удельный вес, сжимаемость, температурное расширение, модуль упругости жидкости).
- •Внутреннее трение в жидкости. Вязкость жидкости. Влияние температуры и давления на вязкость жидкостей. Единицы измерения вязкости.
- •Гидростатика
- •Силы, действующие на жидкость. Модель идеальной жидкости.
- •Давление в жидкости, единицы давления. Свойства гидростатического давления.
- •Свойства гидростатического давления.
- •Основное уравнение гидростатики ( вывод).
- •Закон Паскаля и его практические приложения.
- •Абсолютное, избыточное и вакуумметрическое давление. Приборы для их измерения. Давление абсолютное, избыточное, вакуум
- •Приборы для измерения давления
- •Сила давления жидкости на плоские поверхности . Центр давления.
- •Центр давления
- •Сила давления жидкости на криволинейные стенки.
- •Закон Архимеда.
- •Основы гидродинамики
- •Виды движения жидкости: установившееся, неустановившееся ,равномерно и неравномерное, напорное и безнапорное, плавноизменяющееся движение жидкости.
- •Плавноизменяющееся движение
- •Траектория, линия тока, элементарная струйка. Свойства элементарной струйки.
- •Понятие потока жидкости. Расход жидкости. Гидравлические элементы потока.
- •Уравнение расхода для потока жидкости. Средняя скорость.
- •Уравнение Бернулли для элементарной струйки идеальной жидкости.
- •Уравнение Бернулли для элементарной струйки идеальной жидкости вязкой жидкости. Геометрическая и энергетическая интерпретация уравнения Бернулли.
- •Уравнение Бернулли для потока вязкой жидкости. Коэффициент кинетической энергии.
- •Примеры применения уравнения Бернулли в технике (расход Вентури, скоростная трубка)
- •Гидравлические сопротивления
- •Общие сведения о потерях энергии( напора).
- •Основное уравнение равномерного движения жидкости, распределение скоростей по сечению и его связь с гидравлическим сопротивлением.
- •Режимы движения жидкости. Критерий Рейнольдса и его критическое значение. Критическая скорость движения жидкости.
- •Ламинарный режим движения. Распределение скоростей по сечению цилиндрической трубы. Потери напора.
- •Турбулентное движение. Структура турбулентного потока в трубе. Пульсация и осредненная скорость. Процесс перемешивания.
- •Шероховатость абсолютная и относительная. Понятие о механизме турбулентного течения в гидравлически гладких и шероховатых трубах.
- •Потери напора на трение при турбулентном движении. Формула Дарси-Вейсбаха.
- •*Формула Дарси — Вейсбаха
- •График Никурадзе.
- •Коэффициент Дарси при турбулентном режиме в гладких и шероховатых трубах.
- •Движение в трубах некруглого сечения. Формула Шези. Д вижение жидкости в трубах некруглого сечения
- •Местные сопротивления. Основные виды местных сопротивлений. Коэффициент местных потерь. Формула Весйбаха.
- •Потери напора при внезапном расширении потока жидкости.
- •Местные сопротивления при изменении сечения, изгибе и делении потока.
- •Зависимость коэффициента местных сопротивлений от числа Рейнольдса.
- •Движение жидкости в напорных трубопроводах
- •Назначение и классификация трубопроводов.
- •Основные типы задач по расчету трубопроводов. Методика применения уравнения Бернулли для расчета трубопровода.
- •Гидравлический удар в трубах. Меры борьбы с гидравлическим ударом.
- •Причины возникновения
- •Истечение жидкости из отверстия и насадков
- •Истечение жидкости через малые отверстия в тонкой стенке при постоянном напоре . Сжатие струи. Коэффициенты сопротивления, скорости и расхода.
- •Истечение жидкости из малого отверстия в тонкой стенке при переменном напоре.
- •Истечение жидкости через малое отверстие в тонкой стенке при переменном напоре
- •Истечение жидкости через цилиндрический насадок. Насадки различного типа. Истечение жидкости через насадки
- •18.1. Истечение жидкости через внешние цилиндрические насадки
- •Коэффициенты скорости и расхода для различных насадков. Вакуум в насадках.
- •Общие сведения о лопастных насосах.
- •Принцип действия лопастных насосов.
- •Классификация лопастных насосов.
- •Основные определения, применяющиеся в теории насосов.
- •Центробежные насосы. Классификация.
- •П ринцип действия центробежных насосов
Закон Архимеда.

Силы гидростатического давления действующие на боковые грани, действующие грани равны по назначению и противоположны по направлению поэтому они уравновешены. Сила гидростатического давления действующая на основание призмы не одинаковы. На верхнее основание действует, которая направлена вниз, а на нижнее вверх.
Сила
Архимеда( сила выталкивания)
На любой глубине сила выталкивания одинакова.
Закон Архимеда (формулировка)
На погруженное в жидкость тело действует равнодействующая сила гидростатического давления ( Архимедова сила) направленная вверх и равная весу жидкости, объем который равен объему погруженной части тела.
Основы гидродинамики
Виды движения жидкости: установившееся, неустановившееся ,равномерно и неравномерное, напорное и безнапорное, плавноизменяющееся движение жидкости.
Неустановившимся (нестационарным) называется движение, когда скорость течения и давление зависят от координат точки и изменяются во времени:
,
.
Примерами неустановившегося движения жидкости могут служить, например: истечение жидкости через отверстие из резервуара, если уровень в нём меняется; истечение жидкости из аккумулятора при изменении давления газа в нём; течение жидкости в трубопроводе с включённым в гидросистему поршневым насосом.
Установившимся (стационарным) называется движение жидкости, при котором скорость и давление являются функциями только координат и не зависят от времени.
,
.
Установившееся движение может быть равномерным и неравномерным.
При равномерном движении скорость и давление в соответствующих точках сечения по длине остаются постоянными, т.е. поле скоростей остаётся неизменным вдоль потока.
При неравномерном движении скорость, давление и плотность могут изменяться с изменением координат движущейся частицы жидкости.
Исследование установившихся течений значительно проще, чем неустановившихся.
Безнапорное движение происходит в открытых системах и осуществляется за счёт сил тяжести. Например, движение воды в реках, каналах, трубах при неполном их заполнении.
Напорное движение происходит в закрытых системах (трубопроводах), когда поток со всех сторон окружён твёрдыми стенками и движение осуществляется за счёт разности давлений по длине потока. Например, движение жидкости в трубопроводе от насоса.
Плавноизменяющееся движение
П
лавноизменяющимся называется
такое движение жидкости, при котором
кривизна струек и угол расхождения
между ними весьма малы.Рис.23
С
достаточной точностью для практики
можно считать, что при плавноизменяющемся
движении для всех точек данного живого
сечения, например сечения М-М (рис.
23), давление изменяется по гидростатическому
закону
, a
удельная потенциальная энергия
одинакова, т. е.
Траектория, линия тока, элементарная струйка. Свойства элементарной струйки.
Линией тока называется линия, в каждой точке которой вектор скорости в данный момент времени направлен по касательной. Это понятие является центральным в методе Эйлера.
Рис. 3.3. Линия тока и траектория частицы жидкости
Траекторией называется
путь, который описывает точка при своём
движении. При
установившемся движении линия
тока и траектория частицы совпадают.
В общем случае неустановившегося
движения в следующий момент времени
через
ту же точку А может проходить уже другая
линия тока.
Вектор
скорости
с
компонентами
касателен
к линии тока, т.е. совпадает по направлению
с элементами линии тока
,
имеющего проекции
на
оси координат. Воспользуемся известным
условием параллельности двух векторов
– их проекции на оси координат должны
быть пропорциональны друг другу
.
Полученное условие является уравнением линии тока в дифференциальной форме.
В частном случае при установившемся движении каждая линия тока сохраняет своё положение в пространстве и одновременно становится линией, по которой перемещаются частицы, т.е. совпадает с траекторией.
Э
лементарной
струйкой называется
совокупность линий тока, проходящих
через все точки бесконечно малой
площадки
(рис.3.4).
При установившемся движении элементарная струйка сохраняет с течением времени постоянными свою форму, размеры и положение в пространстве, что является следствием аналогичного свойства составляющих её линий тока.
При стремлении поперечных размеров струйки к нулю она в пределе стягивается в линию тока.
Боковая поверхность элементарной струйки называется трубкой тока (рис.3.4). Трубка тока, таким образом, является как бы непроницаемой стенкой, а элементарная струйка представляет собой самостоятельный элементарный поток.
В случае установившегося движения элементарная струйка обладает следующими тремя свойствами:
1) Форма элементарной струйки не меняется во времени, т.к. при установившемся движении не меняется форма линий тока;
2) Поверхность элементарной струйки (трубки тока) непроницаема, т.е. перетекание через боковые стенки отсутствует. Частицы жидкости, движущиеся в одной линии тока, не могут принадлежать другим;
3) Скорость и давление для всех точек данного поперечного сечения струйки постоянны, однако вдоль струйки эти величины могут меняться.