
- •Введение
- •Определение мжг(Механика жидкости и газа )(гидравлики) как науки и связь ее с другими дисциплинами.
- •Основные физические свойства жидкостей ( плотность ,удельный вес, сжимаемость, температурное расширение, модуль упругости жидкости).
- •Внутреннее трение в жидкости. Вязкость жидкости. Влияние температуры и давления на вязкость жидкостей. Единицы измерения вязкости.
- •Гидростатика
- •Силы, действующие на жидкость. Модель идеальной жидкости.
- •Давление в жидкости, единицы давления. Свойства гидростатического давления.
- •Свойства гидростатического давления.
- •Основное уравнение гидростатики ( вывод).
- •Закон Паскаля и его практические приложения.
- •Абсолютное, избыточное и вакуумметрическое давление. Приборы для их измерения. Давление абсолютное, избыточное, вакуум
- •Приборы для измерения давления
- •Сила давления жидкости на плоские поверхности . Центр давления.
- •Центр давления
- •Сила давления жидкости на криволинейные стенки.
- •Закон Архимеда.
- •Основы гидродинамики
- •Виды движения жидкости: установившееся, неустановившееся ,равномерно и неравномерное, напорное и безнапорное, плавноизменяющееся движение жидкости.
- •Плавноизменяющееся движение
- •Траектория, линия тока, элементарная струйка. Свойства элементарной струйки.
- •Понятие потока жидкости. Расход жидкости. Гидравлические элементы потока.
- •Уравнение расхода для потока жидкости. Средняя скорость.
- •Уравнение Бернулли для элементарной струйки идеальной жидкости.
- •Уравнение Бернулли для элементарной струйки идеальной жидкости вязкой жидкости. Геометрическая и энергетическая интерпретация уравнения Бернулли.
- •Уравнение Бернулли для потока вязкой жидкости. Коэффициент кинетической энергии.
- •Примеры применения уравнения Бернулли в технике (расход Вентури, скоростная трубка)
- •Гидравлические сопротивления
- •Общие сведения о потерях энергии( напора).
- •Основное уравнение равномерного движения жидкости, распределение скоростей по сечению и его связь с гидравлическим сопротивлением.
- •Режимы движения жидкости. Критерий Рейнольдса и его критическое значение. Критическая скорость движения жидкости.
- •Ламинарный режим движения. Распределение скоростей по сечению цилиндрической трубы. Потери напора.
- •Турбулентное движение. Структура турбулентного потока в трубе. Пульсация и осредненная скорость. Процесс перемешивания.
- •Шероховатость абсолютная и относительная. Понятие о механизме турбулентного течения в гидравлически гладких и шероховатых трубах.
- •Потери напора на трение при турбулентном движении. Формула Дарси-Вейсбаха.
- •*Формула Дарси — Вейсбаха
- •График Никурадзе.
- •Коэффициент Дарси при турбулентном режиме в гладких и шероховатых трубах.
- •Движение в трубах некруглого сечения. Формула Шези. Д вижение жидкости в трубах некруглого сечения
- •Местные сопротивления. Основные виды местных сопротивлений. Коэффициент местных потерь. Формула Весйбаха.
- •Потери напора при внезапном расширении потока жидкости.
- •Местные сопротивления при изменении сечения, изгибе и делении потока.
- •Зависимость коэффициента местных сопротивлений от числа Рейнольдса.
- •Движение жидкости в напорных трубопроводах
- •Назначение и классификация трубопроводов.
- •Основные типы задач по расчету трубопроводов. Методика применения уравнения Бернулли для расчета трубопровода.
- •Гидравлический удар в трубах. Меры борьбы с гидравлическим ударом.
- •Причины возникновения
- •Истечение жидкости из отверстия и насадков
- •Истечение жидкости через малые отверстия в тонкой стенке при постоянном напоре . Сжатие струи. Коэффициенты сопротивления, скорости и расхода.
- •Истечение жидкости из малого отверстия в тонкой стенке при переменном напоре.
- •Истечение жидкости через малое отверстие в тонкой стенке при переменном напоре
- •Истечение жидкости через цилиндрический насадок. Насадки различного типа. Истечение жидкости через насадки
- •18.1. Истечение жидкости через внешние цилиндрические насадки
- •Коэффициенты скорости и расхода для различных насадков. Вакуум в насадках.
- •Общие сведения о лопастных насосах.
- •Принцип действия лопастных насосов.
- •Классификация лопастных насосов.
- •Основные определения, применяющиеся в теории насосов.
- •Центробежные насосы. Классификация.
- •П ринцип действия центробежных насосов
Приборы для измерения давления
По характеру измеряемой величины приборы разделяют на такие группы:
1.
Приборы для измерения атмосферного
давления
-барометры.
2.
Приборы для измерения разности абсолютного
и атмосферного давлений, т.е. избыточного
и вакуумметрического давлений: манометры –
приборы, измеряющие избыточное давление
;
вакуумметры –
приборы, измеряющие вакуум
;
мановакуумметры –
приборы, измеряющие и избыточное давление
и вакуум.
3. Приборы для измерения абсолютного давления р манометры абсолютного давления. Манометры абсолютного давления обычно применяют для измерения малых абсолютных давлений.
4. Приборы для измерения разности давлений – дифференциальные манометры.
5.Приборы для измерения малого избыточного давления и вакуума – микроманометры.
По принципу действия различают приборы:
жидкостные;
пружинные;
поршневые;
электрические;
комбинированные и др.
К жидкостным относятся приборы, основанные на использовании гидростатического закона распределения давления. Принцип действия заключается в том, что измеряемое давление уравновешивается давлением, создаваемым весом столба рабочей жидкости. Высота столба рабочей жидкости служит мерой давления.
Действие пружинных приборов основано на применении закона Гука. Сила давления деформирует упругий элемент прибора. Деформация упругого элемента пропорциональна давлению и служит его мерой. Упругий элемент прибора – пружина может представлять собой мембраны (плоские, выпуклые, гофрированные), сильфоны (тонкостенные трубки с поперечной гофрировкой), трубчатые пружины овального сечения (пружины Бурдона).
В поршневых приборах сила измеряемого давления жидкости, приложенная к поршню прибора, уравновешивается внешней силой, величина которой служит мерой давления.
Действие электрических приборов основано на использовании пропорциональности между изменением некоторых электрических свойств материалов и изменением давления. Например, омическое сопротивление некоторых сплавов пропорционально давлению окружающей среды. Это свойство используется для измерения высоких давлений. При измерении быстропеременных давлений используется свойство проводников изменять электрическое сопротивление при деформации. Электрический проволочный датчик наклеивают на упругий элемент, деформирующийся под действием измеряемого давления.
К комбинированным относятся приборы, принцип действия которых носит смешанный характер (например, электромеханические приборы).
Сила давления жидкости на плоские поверхности . Центр давления.
Сила давления жидкости на погруженную в нее плоскую поверхность (рис.2.9) равна
(2.12)
Рисунок 2.9 – Схема для определения силы
давления жидкости
-
гидростатическое давление в центре
тяжести поверхности.
где
-
гидростатическое давление на свободной
поверхности жидкости в резервуаре;
-
глубина погружения центра тяжести
смоченной части плоской поверхности;
S-площадь смоченной части плоской
поверхности;
Таким образом, полная сила давления на плоскую стенку равна произведению площади этой стенки на величину гидростатического давления в ее центре тяжести.
Выражение можно представить в виде
(2.13)
где
(2.14)
(2.15)
Сила
представляет
собой силу поверхностного давления
.
Поскольку давление
распределено
равномерно по всей площади смоченной
части поверхности, его равнодействующая
приложена в центре тяжести этой
поверхности.
Сила
обусловлена
давлением самой жидкости. Сила
приложена
в центре давления Д, координату которого
определяют по формуле
,
(2.16)
где
-
момент инерции плоской фигуры относительно
оси ОХ.
Для
прямоугольника
(b-ширина,
h-высота фигуры), для круга диаметром
d
.