
- •2.Клеточная теория. Ядро, строение и функции ядра.
- •3.Строение клетки. Органоиды цитоплазмы , их строение и функции.
- •4.Строение прокариотических клеток. Вирусы.
- •5.Белки, их строение и функции.
- •6. Углеводы и липиды, их строение и функции.
- •7. Днк, строение и функции. Самоудвоение днк.
- •9.Рнк, строение, типы рнк, и функции их в клетке.
- •10. Обмен веществ в клетке. Энергетический обмен. Этапы энергетического обмена.
- •11. Особенности обмена в растительной клетке. Фотосинтез.
- •12. Синтез белка в клетке.
- •13. Формы размножения организмов.
- •13. Митоз, морфологическая и генетическая характеристика фаз. Биологическое значение митооза.
- •15. Мейоз, 1 и 2 деление мейоза. Биологическое значение мейоза
- •16. Оплодотворение у растений и животных. Двойное оплодотворение у покрытосемянных
- •17. Половое размножение организмов. Развитие половых клеток
- •18. Индивидуальное развитие организмов. Этапы развития зародыша (
- •Дробление и начало развития оплодотворенного яйца
- •19. Постэмбриональное развитие, его типы.
- •20. Современные теории происхождения жизни. Этапы развития жизни на земле.
- •21. Предмет генетики, методы генетики.
- •22. Закономерности наследования при моногибридном скрещивании, установленные г. Менделем и их цитологическое обоснование. Промежуточное наследование.
- •23. Дигибридное скрещивание. 3 закон Менделя, его цитологическое обследование.
- •24. Сцепление генов, закон Томаса Моргана.
- •25. Генетика пола, типы определения пола.
- •26. Генотип как целостная система. Взаимодействие генов, множественное действие генов.
- •27 Генетика человека, ее значение для медицины. Методы генетики человека.
- •29. Наследственная изменчивость. Типы мутации.
- •30. Генетика и эволюционная теория.
- •31. Селекция животных, методы и достижения. Селекция животных
- •Основные методы селекции
- •32. Генетика растений, методы и достижения.
- •33. Эволюционные представления до Чарльза Дарвина.
- •34. Основные положения учения Чарльза Дарвина.
- •35. Факторы эволюции пород животных и сортов у растений.
- •36. Формы естественного отбора ( движущий и стабилизирующий)
- •37. Вид. Популяция как элементарная единица эволюции.
- •38. Видообразование. Результаты эволюции.
- •39. Макроэволюция, ее доказательства.
- •40. Главные направления и пути эволюции органического мира.
- •41. Доказательства происхождения человека от животных. Факторы антропогенеза. Человеческие расы.
- •42. Этапы антропогенеза
- •43. Экологические факторы и их взаимодействие. Экологические факторы и их взаимодействие
- •44. Биоценоз. Связи в биоценозе. Саморегуляция в биогеоценозе.
- •Биотические связи в биоценозах
- •45. Особенности биогеоценозов, создаваемых человеком.
- •46. Биосфера и ее границы. Ноосфера.
- •47. Биосфера и научно – технический прогресс. Охрана биосферы.
7. Днк, строение и функции. Самоудвоение днк.
Как правило, ДНК представляет собой спираль, состоящую из двух комплиментарных полинуклеотидных цепей, закрученных вправо. В состав нуклеотидов ДНК входят: азотистое основание, дезоксирибоза и остаток фосфорной кислоты. Азотистые основания делят на пуриновые (аденин и гуанин) и пиримидиновые (тимин и цитозин). Две цепи нуклеотидов соединяются между собой через азотистые основания по принципу комплементарности: между аденином и тимином возникают две водородные связи, между гуанином и цитозином — три.
Функции ДНК:
1) обеспечивает сохранение и передачу генетической информации от клетки к клетке и от организма к организму, что связано с ее способностью к репликации;
2) регуляция всех процессов, происходящих в клетке, обеспечиваемая способностью к транскрипции с последующей трансляцией.
Процесс самовоспроизведения (авто-репродукции) ДНК называется репликацией. Репликация обеспечивает копирование генетической информации и передачу ее из поколения в поколение, генетическую идентичность дочерних клеток, образующихся в результате митоза, и постоянство числа хромосом при митоти-ческом делении клетки.
Репликация происходит в синтетический период интерфазы митоза. Фермент репликаза движется между двумя цепями спирали ДНК и разрывает водородные связи между азотистыми основаниями. Затем к каждой из цепочек с помощью фермента ДНК-полимеразы по принципу комплементарности достраиваются нуклеотиды дочерних цепочек. В результате репликации образуются две идентичные молекулы ДНК. Количество ДНК в клетке удваивается. Такой способ удвоения ДНК называется полуконсервативным, так как каждая новая молекула ДНК содержит одну «старую» и одну вновь синтезированную полинуклеотидную цепь.
Самоудвоение происходит в интерфазе перед делением. После удвоения каждая хромосома состоит из двух хроматид, которые во время будущего деления превратятся в дочерние хромосомы. Благодаря самоудвоению каждая из будущих дочерних клеток получит одинаковую наследственную информацию.
8. АТФ – универсальный источник энергообеспечения клетки.
Аденозинтрифосфа́т (сокр. АТФ, англ. АТР) — нуклеотид, играет исключительно важную роль в обмене энергии и веществ в организмах; в первую очередь соединение известно как универсальный источник энергии для всех биохимических процессов, протекающих в живых системах. АТФ был открыт в 1929 году группой учёных Гарвардской медицинской школы — Карлом Ломаном, Сайрусом Фиске и Йеллапрагадой Суббарао, а в 1941 году Фриц Липман показал, что АТФ является основным переносчиком энергии в клетке.
Энергетический обмен (катаболизм, диссимиляция) — совокупность реакций расщепления органических веществ, сопровождающихся выделением энергии. Энергия, освобождающаяся при распаде органических веществ, не сразу используется клеткой, а запасается в форме АТФ и других высокоэнергетических соединений. АТФ — универсальный источник энергообеспечения клетки. Синтез АТФ происходит в клетках всех организмов в процессе фосфорилирования — присоединения неорганического фосфата к АДФ.