
- •2.Клеточная теория. Ядро, строение и функции ядра.
- •3.Строение клетки. Органоиды цитоплазмы , их строение и функции.
- •4.Строение прокариотических клеток. Вирусы.
- •5.Белки, их строение и функции.
- •6. Углеводы и липиды, их строение и функции.
- •7. Днк, строение и функции. Самоудвоение днк.
- •9.Рнк, строение, типы рнк, и функции их в клетке.
- •10. Обмен веществ в клетке. Энергетический обмен. Этапы энергетического обмена.
- •11. Особенности обмена в растительной клетке. Фотосинтез.
- •12. Синтез белка в клетке.
- •13. Формы размножения организмов.
- •13. Митоз, морфологическая и генетическая характеристика фаз. Биологическое значение митооза.
- •15. Мейоз, 1 и 2 деление мейоза. Биологическое значение мейоза
- •16. Оплодотворение у растений и животных. Двойное оплодотворение у покрытосемянных
- •17. Половое размножение организмов. Развитие половых клеток
- •18. Индивидуальное развитие организмов. Этапы развития зародыша (
- •Дробление и начало развития оплодотворенного яйца
- •19. Постэмбриональное развитие, его типы.
- •20. Современные теории происхождения жизни. Этапы развития жизни на земле.
- •21. Предмет генетики, методы генетики.
- •22. Закономерности наследования при моногибридном скрещивании, установленные г. Менделем и их цитологическое обоснование. Промежуточное наследование.
- •23. Дигибридное скрещивание. 3 закон Менделя, его цитологическое обследование.
- •24. Сцепление генов, закон Томаса Моргана.
- •25. Генетика пола, типы определения пола.
- •26. Генотип как целостная система. Взаимодействие генов, множественное действие генов.
- •27 Генетика человека, ее значение для медицины. Методы генетики человека.
- •29. Наследственная изменчивость. Типы мутации.
- •30. Генетика и эволюционная теория.
- •31. Селекция животных, методы и достижения. Селекция животных
- •Основные методы селекции
- •32. Генетика растений, методы и достижения.
- •33. Эволюционные представления до Чарльза Дарвина.
- •34. Основные положения учения Чарльза Дарвина.
- •35. Факторы эволюции пород животных и сортов у растений.
- •36. Формы естественного отбора ( движущий и стабилизирующий)
- •37. Вид. Популяция как элементарная единица эволюции.
- •38. Видообразование. Результаты эволюции.
- •39. Макроэволюция, ее доказательства.
- •40. Главные направления и пути эволюции органического мира.
- •41. Доказательства происхождения человека от животных. Факторы антропогенеза. Человеческие расы.
- •42. Этапы антропогенеза
- •43. Экологические факторы и их взаимодействие. Экологические факторы и их взаимодействие
- •44. Биоценоз. Связи в биоценозе. Саморегуляция в биогеоценозе.
- •Биотические связи в биоценозах
- •45. Особенности биогеоценозов, создаваемых человеком.
- •46. Биосфера и ее границы. Ноосфера.
- •47. Биосфера и научно – технический прогресс. Охрана биосферы.
12. Синтез белка в клетке.
Биосинтез белков идет в каждой живой клетке. Наиболее активен он в молодых растущих клетках, где синтезируются белки на построение их органоидов, а также в секреторных клетках, где синтезируются белки-ферменты и белки-гормоны.
Основная роль в определении структуры белков принадлежит ДНК. Отрезок ДНК, содержащий информацию о структуре одного белка, называют геном. Молекула ДНК содержит несколько сотен генов. В молекуле ДНК записан код о последовательности аминокислот в белке в виде определенно сочетающихся нуклеотидов. Код ДНК удалось расшифровать почти полностью. Сущность его состоит в следующем. Каждой аминокислоте соответствует участок цепи ДНК из трех рядом стоящих нуклеотидов.
Например, участок Т—Т—Т соответствует аминокислоте лизину, отрезок А—Ц—А — цистину, Ц—А—А — валину н т. д. Разных аминокислот — 20, число возможных сочетаний из 4 нуклеотидов по 3 равно 64. Следовательно, триплетов с избытком хватает для кодирования всех аминокислот.
Синтез белка — сложный многоступенчатый процесс, представляющий цепь синтетических реакций, протекающих по принципу матричного синтеза.
Поскольку ДНК находится в ядре клетки, а синтез белка происходит в цитоплазме, существует посредник, передающий информацию с ДНК на рибосомы. Таким посредником является и-РНК. :
В биосинтезе белка определяют следующие этапы, идущие в разных частях клетки:
1.Первый этап — синтез и-РНК происходит в ядре, в процессе которого информация, содержащаяся в гене ДНК, переписывается на и-РНК. Этот процесс называется транскрипцией (от лат. «транскриптик» — переписывание).
2.На втором этапе происходит соединение аминокислот с молекулами т-РНК, которые последовательно состоят из трех нуклеотидов — антикодонов, с помощью которых определяется свой триплет-кодон.
3.Третий этап — это процесс непосредственного синтеза полипептидных связей, называемый трансляцией. Он происходит в рибосомах.
4.На четвертом этапе происходит образование вторич ной и третичной структуры белка, то есть формирование окончательной структуры белка.
Таким образом, в процессе биосинтеза белка образуются новые молекулы белка в соответствии с точной информацией, заложенной в ДНК. Этот процесс обеспечивает обновление белков, процессы обмена веществ, рост и развитие клеток, то есть все процессы жизнедеятельности клетки.
Хромосомы (от греч. «хрома» — цвет, «сома» — тело) — очень важные структуры ядра клетки. Играют главную роль в процессе клеточного деления, обеспечивая передачу наследственной информации от одного поколения к другому. Они представляют собой тонкие нити ДНК, связанные с белками. Нити называются хроматидами, состоящими из ДНК, основных белков (гистонов) и кислых белков.
В неделящейся клетке хромосомы заполняют весь объем ядра и не видны под микроскопом. Перед началом деления происходит спирализация ДНК и каждая хромосома становится различимой под микроскопом. Во время спирализации хромосомы сокращаются в десятки тысяч раз. В таком состоянии хромосомы выглядят как две лежащие рядом одинаковые нити (хроматиды), соединенные общим участком — центромерой.
Для каждого организма характерно постоянное количество и структура хромосом. В соматических клетках хромосомы всегда парные, то есть в ядре есть две одинаковые хромосомы, составляющие одну пару. Такие хромосомы называют гомологичными, а парные наборы хромосом в соматических клетках называют диплоидными.
Так, диплоидный набор хромосом у человека состоит из 46 хромосом, образуя 23 пары. Каждая пара состоит из двух одинаковых (гомологичных) хромосом.
Особенности строения хромосом позволяют выделить их 7 групп, которые обозначаются латинскими буквами А, В, С, D, Е, F, G. Все пары хромосом имеют порядковые номера.
У мужчин и женщин есть 22 пары одинаковых хромосом. Их называют аутосомы. Мужчина и женщина отличаются одной парой хромосом, которые называют половыми. Они обозначаются буквами — большая X (группа С) и маленькая Y (группа С,). В женском организме 22 пары аутосом и одна пара (XX) половых хромосом. У мужчин — 22 пары аутосом н одна пара (XY) половых хромосом.
В отличие от соматических клеток, половые клетки содержат половинный набор хромосом, то есть содержат по одной хромосоме каждой пары! Такой набор называют гаплоидным. Гаплоидный набор хромосом возникает в процессе созревания клеток.