Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

РВСС Распространение волн в случайных средах / Лекции / New Асимптотика УПИ степенные индикатрисы

.doc
Скачиваний:
0
Добавлен:
11.06.2024
Размер:
221.18 Кб
Скачать

Асимптотика малоуглового уравнения переноса

(глубинный режим )

Уравнение Шрёдингера с «мнимым» временем

Задача на собственные значения

Разложение модифицированной интенсивности по собственным функциям

В глубинном режиме

Пространственно-угловое представление

Закон сохранения полного потока ( )

Или

Угловая зависимость интенсивности на «крыльях» в асимптотическом режиме

Оценка слагаемых при

Уравнение переноса в угловом представлении

Третье слагаемое в левой части приводит к появлению экспоненты:

Поглощение начинает сказываться на углах отклонения

Отношение

Если , то отношение

Результат:

Или

(*)

Индикатрисы Рейнольдса- Маккормика

(Reynolds L and McCormick N J 1980 JOSA A 70 1206)

Резко анизотропное рассеяние

Транспортное сечение

Малоугловое приближение

Найти асимптотику в области

Табличный интеграл

«Потенциал»

«Уравнение Шрёдингера» для степенных индикатрис

«Потенциал»

Вариационный метод ( )

Минимум функционала

Пробная функция – из результатов приближения диффузии по углам

Физический смысл ?

Промежуточные формулы

Функционал

Минимум функционала

Приближение диффузии по углам ,

Собственное значение

Приближение диффузии по углам ,

Автомодельность решения

Вспоминаем малоугловую диффузию

Введём новую переменную

Преобразуем исходное уравнение

Результат

Собственные значения

где - безразмерные собственные значения!

Ми-частицы в поглощающей матрице

Зависимость формы углового распределения от оптических характеристик среды.

Слабое поглощение

Тонкий слой - угловое распределение резко анизотропное.

Убывание на «крыльях» распределения по закону однократного рассеяния (для степенных индикатрис).

Толстый слой - режим пространственной диффузии, угловое распределение изотропное.

Сильное поглощение , угловое распределение для любой толщины слоя всегда резко анизотропное

Тонкий слой :

- убывание углового распределения по закону однократного рассеяния

- убывание углового распределения по закону

Толстый слой - асимптотический режим:

- убывание углового распределения по закону