Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

ГИА 2024 Ответы УТС (НЕ ВСЕ)

.pdf
Скачиваний:
1
Добавлен:
10.06.2024
Размер:
4.73 Mб
Скачать

3. Типовые комбинационные схемы. Назначение, принципы построения, примеры использования.

Типовые узлы ЭВМ.

Удобной мат. Моделью при решении задач анализа и синтеза любой структурной единицы ЭВМ является цифровой автомат (любое устройство обработки информации в цифровом виде).

1.ЦА без памяти.

2.ЦА с памятью (конечные или последовательные).

Любой ЦА является дискретным уст-вом, т.е. входные и выходные сигналы изменяются в дискретные моменты времени. Для отображения этого факта надо использовать дискретное время. КЛА

В них выходные сигналы в некоторый момент времени ti однозначно определяются входными сигналами в совпадающие моменты времени. Для мат. Описания КЛС достаточно аппарата логики, при этом каждый выход КЛС описывается логической функцией, число аргументов которой равно числу логических форм.

SX0

SY0

y0 (ti ) f0 (x0 , xn 1 , ti )

 

 

 

КЛС

 

 

 

 

 

 

,

где

xj – логическая

SXn-1 модулир

SYn-1

ym 1 (ti ) fm 1 (x0 , xn 1 , ti )

 

 

 

i-том входе, yj - на выходе.

Чтобы

определить логическую

структуру КЛС достаточно рассмотреть каждый выход КЛС как независимую логическую функцию.Однако, минимизация отдельных выходов не гарантирует минимизацию КЛС в целом. Для поиска минимальной структуры КЛС надо учитывать зависимость между выходами КЛС.

1.Если лог. ф-ии имеют общие члены, то такие ф-ии можно упростить путем введения вспомогательных переменных.

Z1

 

0

 

1 X 2 X 0 X 1 X 2 ,

Z 2 X 0

 

1

 

2 X 0 X 1 X 2 ,

X

X

X

X

Z 3 X 1 X 3 X 0 X 1 X 2 .

 

 

 

 

 

Заменим Y X 0 X 1 X 2 . Быстродействие хуже, т.к. сначала считается y, а потом все остальное.

Увеличивается число последовательно соединенных ЛЭ. 2. Выражение одной логической функции через другую. Пример. КЛС имеет два выхода.

S xyz xyz xyz xyz,

P xz yz xy xyz xyz xyz xyz xyz xyz xyz xyz xyz xyz ,

Рассмотрим S как лог. ф-ию от 4-х переменных x,y,z и p. Из 16 наборов переменных 8 старших наборов явл. запрещенными, т.е они не могут иметь место в реальном устр-ве.

Цифровой компаратор, дешифратор, мультиплексор:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Компаратор: сравнение кодов.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ci-1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Применение: делитель с переменным коэффициентом деления.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xi

 

 

 

 

 

 

 

 

 

 

ci

 

 

 

 

 

 

 

 

 

 

 

 

 

 

yi

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Дешифратор: устройство преобразует входной 2-ый код в в позиционный (десятичный)

 

 

 

 

 

 

 

 

 

 

 

Применение: микросхемы памяти.

 

 

x2

 

 

 

 

 

 

 

 

 

 

y0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ДС

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x0

 

 

 

 

 

 

 

 

 

y7

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Мультиплексор – демультиплексор(наоборот): объединяет несколько входов на один выход.

Применение: мультиплексированные линии адреса - данных. Мультиплексор -- комбинационное устройство, предназначенное для подключения одного из n информационных входов к единственному выходу. Помимо информационных входов мультиплексор имеет адресные входы, на которые подается в параллельном коде адресное слово. Между количеством информационных входов и разрядностью адресного слова существует

х0

 

 

Д

 

y

х3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

А1

 

 

 

 

 

 

 

А

 

 

А0

 

 

 

 

 

 

 

 

однозначное соотношение , где: n -- количество информационных входов, k -- количество разрядов адресного слова

Дешифратор относится к преобразователем кодов.

В зависимости от входного двоичного кода на входе дешифратора возбуждается одна и только одна из выходных цепей.

Двоичные шифраторы выполняют операцию, обратную по отношению к дешифратору. При возбуждении одного из входов шифратора на его на его выходе формируется двоичный код номер возбужденноё входной линии.

Мультиплексоры осуществляют подключение одного из входных каналов к выходному под управлением управляющего слова. Коммутаторы (устройства сравнения) определяют отношение между двумя словами.

4. Триггеры. Разновидности и логика работы триггеров. Динамические и статические входы триггеров.

Триггер – элементарные автоматы, содержащие собственно элемент памяти(фиксатор) и схему управления. Фиксатор сроится на двух инверторах, связанных друг с другом накрест, так что выход одного соединяется со входа другого. Если на входе инвертора 1 имеется логический 0, то он обеспечивает на входе инвертора 2 логическую 1, то же согласование сигналов имеет место и для второго состояния, когда инвертор 1 находится в логической единице, а инвертор 2 в 0.

Такое соединение дает цепь с двумя устойчивыми состояниями.

Классификация триггеров проводится по признакам логического функционирования и по способу записи информации. По логическому функционированию различают триггеры типов

RS,D,T,JK и др.

Кроме того, используются комбинированные триггеры, в которых совмещается одновременно несколько типов.

Триггеры типа RS имеют 2 входа – установки в единицу (S) и установки в 0 (R).

Триггеры типа D(задержка) имеет один вход. Его состояние повторяет входной сигнал, но с задержкой, определяемой тактовым сигналом.

Триггеры типа Т изменяет своё состояние каждый раз при поступлении входного сигнала. Имеет один вход и называется триггером со счётным входом или счётным триггером.

Триггер типа JK универсален, он имеет входы установки (J) и сброса (K) подобные входам триггера SR. В отличие от последнего допускает ситуацию с одновременной подачей сигналов на оба эти входа (J=K=1). В этом режиме работает как счётный триггер относительно третьего (тактового) входа.

В комбинированных триггерах совмещается несколько режимов.

По способу записи информации различают асинхронный и синхронный триггеры (не тактируемые и тактируемые)

Вне тактируемых переход в новое состояние вызывается непосредственно изменением входных информационных сигналов.

Втактируемых, имеющихспециальныйвход, переходпроисходиттолькоприподаченаэтот вход тактовых сигналов.

По способу восприятия тактовых сигналов триггеры делятся на управляемые уровнем и управляемые фронтов.

Динамический вход может быть прямым и инверсным. Прямое динамическое управление означает разрешение на переключении при изменении тактового сигнала с нулевого значения на единичное, инверсное – при изменении тактового сигнала с единичного значения на нулевое.

Уравнение триггера:

JK: Qn = JQ QK D: Qn = D

5. Регистры: классификация, принципы построения, выполняемые функции, примеры использования.

Регистры –автоматы с памятью, которые обрабатывают инф-цию на уровне слов. Регистры относятся к интегральным схемам средней степени интеграции.

Регистрыделятсяна: параллельные, последовательные(сдвигающие), параллельно– последовател., посл. – параллельные, универсальные.

Все регистры предназначены для ряда операций над машинными словами. Регистры строятся на однотактных D- тригерах с динамическим управлением.

Параллельный двухразрядный регистр.

R

C

DI

POн

Опер-ция

0

*

*

0

Cброс

1

0

*

D0

Хранение

1

1

*

D0

Хранение

1

 

di

di

Пар-ая запись

DI=D0ID1I

D0=D0OD1O

В ЦВМ линии связи объединены в шины и магистрали, при этом различают шину адреса, шину данных и шину управления. Различают устр-ва подключенные к шинам параллельно. При этом возникает задача идентификации устр-ва владеющим выходом. Для подключнеия выхода устр-ва к общей шине используются интегральные схемы, имеющие выход с тремя состояниями, или с открытым коллктором(сток).

Ф-ции параллельных регистров: -прием инф-ции -хранение, если есть сброс

-выдача кодов, если параллельный регистр дополняется вых с 3 состояниями.

Регистр со сдвигом:

Вкаждом такте работы происходит Сдвиг на 1р вправо эквивалентен делению на 2,положит, а если

влево эквивалентен умножению на 2.

Парал. – последоват. регистр:

Наряду со входом сдвига имеет вход параллельной записи.

Универсальные регистры:

Обладают функциями парал и последоват регистров сдвига. Имеют сложную схему управления, внешние сигналы на входе которой определяют режим работы:

-хранение -запись -сдвиг вправо -сдвиг в лево

Регистры сдвига исп-ся для преобразования параллельных входов в последовательные и последовательные в параллельные, в схемах умножения и деления.

Признак классификации регистра – способ приёма и выдачи данных: парал., последовательные (сдвигающие), параллельно – последовател., посл. – парал. и универсальные. Все регистры предназначены для ряда операций над машинными словами. Регистры строятся на однотактных D- тригерах с динамическим управлением.

В ЦВМ линии связи объединены в шины и магистрали, при этом различают шину адреса, шину данных и шину управления. При этом возникает задача Идентификации устр-ва владеющим выходом. Для подключнеия используется выход с тремя состояниями, или с открытым коллктором(сток).

Регистр с 3мя состояниями:

Если парал-ый рег дополнить вых-ми с 3 сост-ми то у него появится дополн микрооперация – выдача кода. Такие рег можно непосредственно нагружать на общие шины.

Регистр со сдвигом вправо:

Состоит из цепочки D-триггеров вых Q соед. Со входом D и т.д. DR-вход сдвига вправо. Сдвиг вправо эквивалентен делению на 2,положит. Число – DR=0,отрицат – DR= 1 Это операция преобразования парал. кода в последоват.

Парал. – последоват. регистр:

Наряду со входом сдвига есть парал. взод.

Универсальные регистры:

Обладают функциями парал и последоват регистров. Имеют сложную схему управления, внешние сигналы на входе которой определяют режим работы.

6. Счетчики: назначение, классификация, принципы построения, режимы работы примеры использования.

Устройство которое подсчитывает число событий происходящих на их входе (либо положительный, либо отрицательный перепад).

По способу построения счётчики делятся на:

синхронные (параллельные)

асинхронные (последовательные) По направлению счёта:

прямые

реверсивные

универсальные – которые могут складывать и вычитать, они могут работать в счётном режиме

ив режиме вычитания

По системе счисления:

двоичные

двоично – десятичные

специальные

Основу составляют: Счётчик на базе Т-триггера (счётный триггер) - прямой асинхронный двоичный счётчик.

2n – все выходы счётчика. n – количество триггеров. Временные диаграммы (3-х разрядный)

4

2

1

4

 

2

 

1

 

 

0

0

0

1

1

1

0

0

1

1

1

0

0

1

0

1

0

1

0

1

1

1

0

0

1

0

0

0

1

1

1

0

1

0

1

0

1

1

0

0

0

1

1

1

1

0

0

0

Счётвпрямомнаправлении, еслисниматьспрямыхвходов. Инверсныевходыбудутобразовывать обратный счёт.

Недостаток: быстродействие прямо пропорционально количеству разрядов.

В параллельных счётчиках сигнал синхронизации подаётся одноактно, а функция счётчика реализуется за счёт схемы подключения выхода счётчика по выходам счётчика.

Современные микросхемы счётчиков имеют разъёмы для наращивания разряда.

7. Полупроводниковая память: назначение, классификация. Временные диаграммы работы ЗУ.

Полупроводниковые ЗУ служат для хранения и обработки информации, обмена его с другими устройствами. Основные параметры ЗУ являются альтернативными друг другу: > информационная емкость противоречит быстродействию, что в свою очередь не сочетается с ценой. В связи с этим память в современных ЭВМ/ЦУ имеет многоступенчатую иерархическую структуру: 1ур – РегистровыеЗУ– встроенныевпроцессор(наиболееб/дпамятьнебольшогообъема) – сокращение количества обращений к др. видам памяти. СОЗУ, РОН, РФ. 2 ур. – КЭШ память служит для хранения копий информации, участвующей в текущих операциях обмена. Размер – 512 кБ, высокое быстродействие обеспечивает повышение производительности системы в целом. 3 ур. – Основная память – полупроводниковая, постоянная или оперативная память ОЗУ, ПЗУ имеет достаточно большой объем но менее быстродействующая. Память хранит используемый в текущий момент фрагмент программы вместе с данными. Быстродействие в идеале должно быть согласовано с быстрод. процессора. В этом случае отпадает необходимость в КЭШ памяти. 4 ур. – специальные виды памяти – многопортовая, ассоциативная, видеопамять, буферы промежуточного хранения и др. Многопортовая ОЗУ. 5 ур – Внешняя память ВЗУ: магнитные диски, CD, флеш. Многие виды ВЗУ представляют собой механические устройства с вращающимся носителем информации, что ограничивает быстродействие таких устройств. ВЗУ имеют значительно большую емкость чем основная память при значительно более низком быстродействии. Особенность – возможность хранения информации при отсутствии питания. Основные параметры ЗУ: 1) Информационная емкость– max возможныйобъемхранимойинформации(бит, байт, кбит, кбайт, Мбайт – 220б, Гбайт

– 230б; если шина32 разрядн– 232/230=4Гб), 2) ОрганизацияЗУ – произведениечислахранимых слов на их разрядность: 2048*8=2кБайт, 3) Быстродействие ЗУ оценивается временем записи, длительностью цикла чтения-записи. Время считывания – интервал между моментами появления сигнала чтения и слова на выходе ЗУ. Время записи – интервал после появления сигнала записи, достаточного для установления запоминающей ячейки в состояние, заданное входным кодом. Минимально допустимый интервал между последовательными циклами чтения-записи образует соответствующий цикл доступа. Длительности цикла в чтении и записи несколько больше собственно цикла чтения и записи. Это связано с тем, что после выполнения операции требуется некоторое время для восстановления начала записи ЦУ.

Классификация ЗУ по способу доступа: 1)Адресные (Rom – ROM-M, P-ROM, EROM, EEROM, FLASH; RAM: статические: асинхронные, синхронные, конвейерные; динамические: стандартные, квазистандартные, повышенного быстродействия), 2) Последовательные (буферного типа – FIFO, LIFO, файловые, циклические), 3) Ассоциативные (Полностью ассоциативные, с прямым отображением, наборно-ассоциативные).

При адресном доступе код на адресн. входах указывает ячейку, к которой происходит обращение. Все ячейки в момент обращения равнодоступны, следов-но время обращения к любой ячейке одинаково. Другие типы ЗУ часто строится на базе адресных ЗУ (ROM, RAM, ОЗУ). ROM – read only memory – память только для чтения – ПЗУ. RAM – random access memory – память с произвольным доступом ОЗУ. ОЗУ – для хранения данных, которые могут быть изменены в произвольный момент времени: фрагмент исполняемой программы вместе с используемыми данными. Хранит информацию при наличии питания. Не является энергонезависимой памятью. Отличие между статическими и динамическими ОЗУ осуществляется в построении запоминающей ячейки. Ячейки статической ОЗУ – простейший асинхронный RS-триггер. Ячейка динамической ОЗУ представляет конденсатор, выполняемый в виде МОП-структуры. Информация в динамической запоминающей ячейке хранится в виде заряда конденсатора. Т.к. заряд конденсатора стечениемвремениуменьшается, ячейкидинамическогоОЗУнеобходимо подвергатьрегенерации. (контроллеры регенерации –SRAM static RAM, DRAM - dynamic RAM). В случае асинхронных ЗУ сигналы управления могут быть как импульсными, так и потенциальными. В синхронных статических ОЗУ некоторые сигналы обязательно должны быть импульсными (сигн. управления – напр. сигнал выборки кристалла CS), позволяют привязать цикл обращения к тактам процессора. В конвейерных ОЗУ организован конвейерный принцип обработки информации, согласно которому цикл обработки (обращения к памяти) разбивается на несколько фаз. Конвейерной называют такую организацию исполнения команд обращения к памяти, при которой в каждом такте одновременно выполняются несколько команд, находящихся в различных фазах обработки. При конвейерной организации обмен осуществляется пакетами. Первое обращение в пакете – длинное (стандартное), 2е и последующие – более быстрые, за счет эффекта от конвейера.

Динамические ОЗУ характеризуются наибольшей информационной емкостью и относительно невысокой стоимостью. Как правило, именно они составляют основную память вычислительной машины.

ВПЗУ время записи >> времени чтения. Информация записывается в спец режиме (режиме программирования). Время программирования 1 запоминающей ячейки зависит от типа ПЗУ. В принципе, время считывания из ПЗУ соизмеримо с временем считывания из ОЗУ. ПЗУ – энергонезависимое устройство, хранящее информацию без питания. По типу запомин ячеек ПЗУ делятся на: масочные (ROMM – однократно программируемые), однократно программируемые (PROM), перепрограммируемые с УФ стиранием (EPROM – стирается сразу вся информация), перепрограммируемые с электрическим стиранием (EEPROM), Flashпамять. 2 оставшихся типа предполагают электрическое стирание (можно стирать и программировать на плате). Избирательное стирание (до 1 блока). Flash программируется том же напряжении, при котором считывается (5V). Остальные используют дополнительные источники питания 12-25V.

Последовательные (Буферные, файловые, циклические).

-В буферах типа FIFO даже одна запись после записи в пустой буфер сразу доступна для чтения. -В файловых ЗУ запись доступна для чтения только после заполнения буфера.

-В циклических ЗУ снова доступны одно за другим, кот определяются емкостью ЗУ, к такому типу ЗУ относят видеопамять.

-Кадровый буфер хранит инф-цию о пикселях.

Ассоциативные (полная ассоциация,с прямым отображением,наборн. ассоциат)

Вассоциативных ЗУ – поиск инф-ции осущ по некоторому пр-ку, а не по расположению в памяти (по адресу и месту расположения в буфере).

Стек-часть оперативной памяти процессора, буфер для временного хранения данных, кот представляет собой память с последующим доступом-стек.

Кэш – служит для хранения копий информации с памяти участвующей в текущей операции обмена.

Основные структуры адресных ЗУ:

2D – структура – двухмерная, с однокоординатной выборкой. ЗУ состоит из дешифратора адреса (DC), накопителя, усилителя записи/считывания, схема управления. Код, подаваемый на вход DC, активизирует одну из строк накопителей. В режиме записи усилитель считывания подключает входы данных запоминающих элементов накопителя. В результате входной код записывается в запомин элемент выбранной строки. В режиме чтения на выходах данных устанавливается код = содержимому ячеек активизированной строки накопителя. Направлением передачи данных управляет внешний сигнал Read/Write, обычно 0/1. Сигнал выборки кристалла CS – разрешает работу микросхемы вообще. Информационная емкость Vзу=2nx m=разрядность одной ячейки x на количество ячеек выхода. Недостаток структуры: сложность адресного дешифратора при большой информационной емкости.

Структура 3D с однобитной (одноразрядной) организацией накопителя. Имеются два адресных дешифратора.

A=AxAy=Axn-k-1=Ax0Ayk…Ay0

DCx – дешифратор строк DCy – дешифратор столбцов

В результате подачи адреса запомин ячейки на вход интегральной схемы ЗУ активизируется один запоминающий элемент, находящийся на пересечении строки и столбца, номер которого содержится в поле адреса. Достоинства 3D: сокращение общего количества выходов адресного дешифратора.

Nx=2n-k Ny=2k n-k=k=k/2, n – четное N=Nx+Ny=2n/2+2n/2=2*2n/2=2*2k/2=2n/2+1

Недостаток: усложнение схемы запомин элемента за счет двухкоординатной выборки.

На базе структуры с одноразрядной организацией строятся структуры с многоразрядной организацией накопителя. В этом случае m- одноразрядных накопителей включаются параллельно относительно адресных дешифраторов, где m- разрядность слова данных. Получается полноценная 3D структура.

Достоинства 2D и 3D структур сочетаются в модифицированной 2D структуре 2DМ

1). Сигналом активного уровня с выхода DCx возбуждается 1 из 2n-k строк накопителя длиной m*2k, m – разрядность слова данных.

2). Сигналом активного уровня с выхода DCy из m*2k выбранных запомин элементов обращение осуществляется к одному слову из m элементов (т.е. в каждой из m групп элементов размером 2k выбирается один элемент – 1 бит слова данных).

3). В данном случае сложность схемы переносится на схему буфера данных, который должен иметь в своем составе m двунаправленных мультиплексоров с организацией 2kх1, кот. в режимах записи и чтения по коду адреса столбца формируют из длинной строки слово данных.