 
        
        ВМ 2 семестр / Лекции / Лекция 10
.pdf1
Лекция 10. Векторное поле. Поток векторного поля. Вычисление потока векторного поля
Лекция 10
Векторное поле и поток векторного поля
1. Векторное поле
Определение 1. Пусть в каждой точке M области D некоторого пространства определена векторная величина a (M ) . В данном случае говорят, что в области
| D задано векторное поле a . | 
 | 
 | 
 | 
 | |||||
| 
 | Рассмотрим пространство трех переменных со связанной с ним | ||||||||
| декартовой системой координат Oxyz . В точке | M x, y, z | области | |||||||
| DOxyz векторное поле a , как правило, задается следующим образом: | 
 | ||||||||
| 
 | a (M ) P x, y, z | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
| 
 | i | Q(x, y, z) | j | R(x, y, z)k , | (1) | ||||
| где | функции трех переменных P x, y, z , Q(x, y, z), R(x, y, z) | называют | |||||||
| компонентами векторного поля. | 
 | 
 | 
 | 
 | |||||
Определение 2. Векторной линией поля называется кривая, в каждой точке которой вектор a направлен по касательной к данной кривой.
Примерами векторных линий в физике являются силовые линии
| гравитационного, электрического и магнитного полей. | 
 | 
 | 
 | 
 | ||||||||||||||||||||
| Пусть уравнение векторной линии задано параметрически в виде | 
 | |||||||||||||||||||||||
| 
 | 
 | r (t) x t | 
 | 
 | y t | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||
| 
 | 
 | i | 
 | j | 
 | z(t)k . | (2) | |||||||||||||||||
| Соответствующий вектор касательных к векторной линии будет иметь вид | ||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||
| 
 | 
 | t r (t) x t i | 
 | y t j z (t)k . | 
 | |||||||||||||||||||
| 
 | 
 | (3) | ||||||||||||||||||||||
| По определению векторной линии | 
 | вектор | 
 | 
 | t | 
 | 
 | 
 | ||||||||||||||||
| 
 | 
 | должен быть | коллинеарен | |||||||||||||||||||||
| вектору a , тогда выполняется условие | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||
| 
 | 
 | 
 | x t | 
 | 
 | 
 | y t | 
 | 
 | z t | . | (4) | ||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||
| 
 | 
 | 
 | P | 
 | 
 | 
 | Q | 
 | 
 | P | 
 | 
 | ||||||||||||
Стаценко И.В. Лекция 10. Векторное поле и поток векторного поля
 
2
Причем величина может быть константой или любой дифференцируемой функцией от величин x, y, z,t .
Из (4) имеем систему дифференциальных уравнений:
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | dx | 
 | P x, y, z , | 
 | (5) | ||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | dt | 
 | |||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | dy | 
 | Q x, y, z , | 
 | (6) | |||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | dt | 
 | |||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | dz | 
 | R x, y, z . | 
 | (7) | ||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | dt | 
 | ||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||
| Для поиска векторной линии поля a , проходящей через заданную точку | ||||||||||||||||||
| M0 x0 , y0 , z0 , | дифференциальные уравнения | (5-7) решают, | используя | |||||||||||||||
| начальные условия y x0 y0 ; | 
 | 
 | z x0 z0 . | 
 | 
 | |||||||||||||
| Пример1. | Найти | 
 | 
 | векторные | линии | поля | ||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||
| a (M ) z y | i | 
 | x z | j | y x k . | 
 | 
 | |||||||||||
| Решение: Пусть const . | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||
| 
 | dx | z y , | 
 | 
 | dy | x z , | dz | y x . | 
 | |||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||
| 
 | dt | 
 | 
 | dt | dt | 
 | ||||||||||||
Откуда, сложив все три уравнения, получим
d x y z 0 ; dt
d x y z 0dt ;
Получим решение
x y z С1 const .
Умножим уравнения на x , y , z , после чего сложим. В результате получим
d x2 y2 z2 0; dt
Стаценко И.В. Лекция 10. Векторное поле и поток векторного поля
3
d x2 y2 z2 0dt ;
Откуда получим
x2 y2 z2 С2 const .
Тогда семейство векторных линий для данного векторного поля имеет вид
x y z С1 const,
x2 y2 z2 С2 const.
| 
 | 2. Поток векторного поля | 
 | |
| В | некоторой области пространства | рассмотрим | векторное поле | 
| a (M ) | и кусочно-гладкую ориентированную | замкнутую | поверхность . | 
| Рассмотрим также поле единичных нормалей | n 0 M на выбранной стороне | ||
| поверхности . | 
 | 
 | |
| Определение 3. Потоком П векторного поля | a (M ) через ориентированную | ||
поверхность называется поверхностный интеграл по дифференциалу площади поверхности от проекции векторного поля a (M ) на нормаль n 0 M к поверхности , т.е.
| 
 | 
 | n | 
 | 
 | a, n 0 | 
 | 
 | ||
| П | Пр | 
 | a | d | 
 | 
 | d . | (8) | |
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| Физическая интерпретация | потока. | Рассмотрим | стационарное | движение | |||||
жидкости в трехмерном пространстве с полем скоростей v (M ) . Поставим
| задачу вычислить объем жидкости, проходящий через поверхность в | |
| определенном направлении за интервал времени t см. рис.1. | 
 | 
| Объем dV жидкости, протекающей через элемент d поверхности | , | 
| приближенно равен объему цилиндра с основанием d и высотой Прn v t | 
 | 
| dV Прn v t d v , n 0 t d . | (9) | 
Тогда через всю поверхность за время t протечет объем жидкости равный
| V t v , n 0 d . | (10) | 
| 
 | 
 | 
Стаценко И.В. Лекция 10. Векторное поле и поток векторного поля
 
4
За единицу времени через всю поверхность протечет объем жидкости равный
| V v , n 0 d . | (11) | 
| 
 | 
 | 
Таким образом, физический смысл потока состоит в том, что при интерпретации векторного поля a (M ) как поля скоростей стационарной жидкости в
трехмерном пространстве, поток данного поля через поверхность есть объем жидкости, проходящей через данную поверхность в единицу времени.
n 0
| v | 
| 
 | 
| 
 | 
Рис.1.
Стаценко И.В. Лекция 10. Векторное поле и поток векторного поля
5
Основные свойства потока векторного поля:
1.С изменением ориентации поверхности (с изменением ориентации вектора нормали к поверхности) поток меняет знак на противоположный, т.е.
| 
 | a, n 0 | 
 | 
 | a,n 0 | 
 | 
 | ||
| 
 | 
 | d | 
 | 
 | d . | (12) | ||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||
2.Линейность потока
| 
 | 
 | 
 | 
 | 
 | 
 | a, n 0 | 
 | 
 | 
 | 
 | , n 0 | 
 | 
 | 
| 
 | a | b | , n 0 | d | 
 | d | 
 | 
 | b | d , | (13) | ||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
где , const .
3.Аддитивность потока
| 
 | a, n 0 | 
 | 
 | a, n 0 | 
 | 
 | a, n 0 | 
 | 
 | 
| 
 | d | 
 | d | 
 | d . | (14) | |||
| 
 | 
 | 
 | 1 | 
 | 
 | 2 | 
 | 
 | 
 | 
где 1 , 2 - два непересекающихся (но имеющих общую границу) гладких фрагмента поверхности , формирующие всю поверхность .
3.Вычисление потока векторного поля
Для вычисления потока векторного поля через поверхность использовать следующие способы:
-метод проектирования на одну координатную плоскость;
-метод проектирования на три координатные плоскости;
-метод использования криволинейных координат;
-теорему Остроградского-Гаусса.
Стаценко И.В. Лекция 10. Векторное поле и поток векторного поля
 
6
3.1.Вычисление потока векторного поля методом проектирования на одну координатную плоскость
| Пусть незамкнутая ограниченная поверхность задается в явном виде | ||||||||||||||||||||||||||
| уравнением z z x, y | и | проектируется на | плоскость | 
 | Oxy в область | Doxy . | ||||||||||||||||||||
| Тогда для дифференциала площади поверхности d | 
 | 
 | 
 | 
 | 
 | 
 | и дифференциала | |||||||||||||||||||
| области ds dxdy ранее установлена взаимосвязь | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||
| 
 | 
 | 
 | 
 | d | 
 | 
 | dxdy | 
 | 
 | 
 | 
 | 
 | 
 | dxdy | 
 | 
 | 
 | , | 
 | 
 | 
 | (15) | ||||
| 
 | 
 | 
 | 
 | 
 | 
 | cos | 
 | 
 | 
 | cos x, y | 
 | 
 | 
 | 
 | 
 | |||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||
| где | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||
| 
 | cos | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 1 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | . | (16) | |
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||
| 
 | 
 | 
 | 
 | 
 | z x, y 2 | 
 | z x, y | 
 | 2 | 
 | ||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 1 | 
 | ||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | x | 
 | 
 | 
 | y | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||
В этом случае поток векторного поля вычисляется по формуле
| 
 | 
 | 
 | 
 | 
 | a, n 0 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | a, n | 0 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||
| П | 
 | d | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | dxdy , | ||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | cos | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | D | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||
| где | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | Oxy | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | z z ( x, y ) | |||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | i | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | j k | |||||||||||||||||||
| 
 | 
 | 
 | 
 | z | x, y | 
 | z | x, y | 
 | 
 | |||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||
| n 0 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | x | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | y | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | . | |||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||
| 
 | 
 | z | x, y | 2 | 
 | 
 | z x, y 2 | 
 | |||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 1 | |||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | x | 
 | 
 | 
 | 
 | 
 | 
 | 
 | y | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||
(17)
(18)
| Для определения знака вектора единичной нормали | n 0 используется | 
| следующее правило: если угол x, y между положительным направлением | |
| оси Oz и вектором n 0 в точке x, y, z(x, y) поверхности | острый, то в | 
формуле (18) берется знак плюс; если данный угол тупой, то берется знак минус.
Стаценко И.В. Лекция 10. Векторное поле и поток векторного поля
 
7
Для удобства запоминания формулы (18) используется следующий вариант с использованием оператора градиента скалярного поля.
| 
 | 
 | 
 | 
 | 
 | n 0 | 
 | grad z z(x, y) | , | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | (19) | ||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | grad z z(x, y) | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||
| 
 | 
 | grad f (x, y, z) f | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | f | 
 | 
 | 
 | 
 | f | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||
| где | 
 | 
 | i | 
 | j | k . | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | x | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | y | 
 | 
 | 
 | 
 | 
 | 
 | 
 | z | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||
| Пусть незамкнутая ограниченная поверхность задается в явном виде | |||||||||||||||||||||||||||||||||||||||||||||||||||||
| уравнением | x x y, z | 
 | и | проектируется на | плоскость Oyz в область Doyz . | ||||||||||||||||||||||||||||||||||||||||||||||||
| Тогда для | дифференциала | площади | 
 | 
 | 
 | поверхности | d | 
 | 
 | и | дифференциала | ||||||||||||||||||||||||||||||||||||||||||
| области ds dydz ранее установлена взаимосвязь | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | d | 
 | 
 | 
 | 
 | dydz | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | dydz | 
 | 
 | 
 | 
 | 
 | , | 
 | 
 | 
 | 
 | (20) | ||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | cos | 
 | 
 | 
 | 
 | 
 | 
 | cos y, z | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||
| где | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| 
 | 
 | cos | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 1 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | . | (21) | |
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||
| 
 | 
 | 
 | 
 | 
 | x y, z 2 | 
 | 
 | x y, z 2 | 
 | ||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 1 | 
 | ||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | y | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | z | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||
| В этом случае поток векторного поля вычисляется по формуле | 
 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | a, n | 0 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||
| 
 | 
 | 
 | 
 | a, n 0 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||
| 
 | 
 | П | 
 | d | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | dydz , | (22) | |||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | cos | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | D | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||
| где | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | Oyz | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | x x( y,z ) | 
 | 
 | 
 | 
 | ||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
| 
 | 
 | 
 | 
 | 
 | 
 | n 0 | 
 | 
 | 
 | grad | x x( y, z) | 
 | 
 | . | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | (23) | ||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | grad x x( y, z) | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||
| Для определения знака вектора единичной | 
 | нормали | n 0 используется | ||||||||||||||||||||||||||||||||||||||||||||||||||
| следующее правило: если угол | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | y, z между | 
 | 
 | положительным | ||||||||||||||||||||||||||||||||||||||||
| направлением оси Ox | 
 | и | вектором | 
 | 
 | n 0 в | точке | 
 | x y, z | , y, z поверхности | |||||||||||||||||||||||||||||||||||||||||||
острый, то в формуле (23) берется знак плюс; если данный угол тупой, то берется знак минус.
Стаценко И.В. Лекция 10. Векторное поле и поток векторного поля
 
8
| Пусть незамкнутая ограниченная поверхность задается в явном виде | |||||||||||||||||||||||||||||||||||||||||
| уравнением y y | x, z | 
 | и проектируется | на | плоскость | Oxz в область Doxz . | |||||||||||||||||||||||||||||||||||
| Тогда для дифференциала площади поверхности | d | 
 | 
 | и | дифференциала | ||||||||||||||||||||||||||||||||||||
| области ds dxdz ранее установлена взаимосвязь | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | d | 
 | 
 | dxdz | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | dxdz | 
 | 
 | 
 | , | 
 | 
 | 
 | (24) | |||||||||||||||
| 
 | 
 | 
 | 
 | 
 | cos | 
 | 
 | 
 | 
 | 
 | cos y, z | 
 | 
 | 
 | |||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||
| где | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |
| 
 | cos | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 1 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | . | (25) | ||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||
| 
 | 
 | 
 | y x, z 2 | y x, z 2 | |||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 1 | 
 | 
 | |||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | x | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | z | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||
| В этом случае поток векторного поля вычисляется по формуле | 
 | 
 | |||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | a, n | 0 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 0 d | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||
| 
 | П | a, n | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | dxdz , | (26) | |||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | cos | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | D | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||
| где | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | Oxz | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | y | y ( x,z ) | 
 | 
 | 
 | ||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | n 0 | 
 | 
 | 
 | grad y y(x, z) | 
 | . | 
 | 
 | 
 | 
 | 
 | (27) | ||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | grad y y(x, z) | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||
| Для определения знака вектора единичной | 
 | нормали | 
 | n 0 используется | |||||||||||||||||||||||||||||||||||||
| следующее правило: если угол | 
 | 
 | 
 | 
 | 
 | x, z между | положительным | ||||||||||||||||||||||||||||||||||
| направлением оси | Oy | 
 | и | вектором | 
 | n 0 в | 
 | точке | 
 | x, y x, z | , z поверхности | ||||||||||||||||||||||||||||||
острый, то в формуле (27) берется знак плюс; если данный угол тупой, то берется знак минус.
Стаценко И.В. Лекция 10. Векторное поле и поток векторного поля
 
9
Пример 2. Найти поток векторного поля a yi xj zk через часть поверхности параболоида z x2 y2 для условия 0 z 1 (нормаль внешняя).
Решение:
Используем формулы (15-18) для поверхности, заданной в явной форме
z z x, y .
Тогда
| 
 | 
 | grad z x2 | y2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
| n 0 | 
 | 
 | 2xi | 2 yj k | ; | 
 | |||||||
| 
 | grad z x2 | y2 | 
 | 
 | |||||||||
| 
 | 
 | 
 | |||||||||||
| 
 | 
 | 
 | 4x2 4 y2 1 | 
 | |||||||||
| В формуле используется знак , так как вектор внешней | нормали | ||||||||||||
на всей поверхности параболоида имеет тупой угол по отношению к положительному направлению оси Oz см. рис. 1
z
1
y
n 0
| x | Рис.2. | 
| 
 | 
Стаценко И.В. Лекция 10. Векторное поле и поток векторного поля
 
10
Далее получаем
| 
 | 
 | 
 | 
 | cos x, y | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 1 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ; | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 4x2 4 y2 1 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | a, n 0 | 2xy 2 yx z | ; | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 4x2 4 y2 | 1 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | a, n | 0 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | a, n 0 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||
| 
 | 
 | 
 | П | 
 | 
 | d | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | dxdy | |||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | cos | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | D | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | Oxy | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | z z ( x, y) | 
 | 
 | 
 | 
 | ||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | x2 | y2 | 
 | 
 | 
 | 
 | ||||||||||||||||||||
| 
 | 4xy z | 
 | z x2 y2 | dxdy | 4xy | dxdy | ||||||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||
| 
 | DOxy | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | DOxy | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 1 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||
| 2 2 sin 2 2 d d d 2 3 sin 2 3 d | ||||||||||||||||||||||||||||||||||||||||||||||||||
| GO | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 0 | 
 | 
 | 
 | 0 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||
| 
 | 
 | 
 | 2 | 
 | 4 | sin 2 | 
 | 4 | 
 | 1 | 
 | 
 | 2 | 
 | 1 | 
 | 
 | 
 | 
 | 
 | 2 | 1 | 
 | |||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | d | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | sin | 
 | d | |||||||||||||||||||||||||
| 
 | 
 | 
 | 2 | 
 | 
 | 4 | 
 | 2 | 4 | |||||||||||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 0 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 0 | 
 | 
 | 
 | 0 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | ||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 1 | cos 2 | 
 | 
 | 
 | 1 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | . | 
 | 
 | 
 | 
 | ||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 4 | 4 | 
 | 
 | 
 | 
 | 
 | 2 | 
 | 
 | 
 | 
 | |||||||||||||||||||||||||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 0 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||||||||
| 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | 
 | |||||
Стаценко И.В. Лекция 10. Векторное поле и поток векторного поля
