Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
0
Добавлен:
01.04.2024
Размер:
791.07 Кб
Скачать

/ (%)

 

 

 

 

30

 

 

 

 

10

 

LiNbO3

 

 

3

 

 

 

 

1

 

 

 

 

Quartz

 

 

 

 

0.1

 

Resonators

 

 

 

 

 

 

0.01

 

 

 

 

 

 

 

 

f0

30 MHz

100 MHz

300 MHz

1 GHz

1 GHz

Figure 3.3 Choices of materials and of technology for different characteristics of filters

Table 3.3 Performance of SAW filters

 

Present

Typical Values

Foreseeable

 

Limits

Limits

 

 

 

 

 

 

Central

10 MHz –

10 MHz –

6 GHz

Frequency

4.4 GHz

2 GHz

 

Bandwidth

50 KHz -

100 KHz –

0.8 f0

0.7 f0

0.5 f0

 

 

Insertion

2 dB

3-20 dB

1 dB

Loss (min)

 

 

 

Shape

1.2

1.5

1.2

Factor (min)

 

 

 

Transition

50 KHz

100 KHz

20 KHz

Band (min)

 

 

 

Rejection

60 dB

50 dB

70 dB

 

 

 

 

Phase

 

 

 

Difference/

± 1

± 2

± 0.5

Linear Phase

 

 

 

Ripples

0.01 dB

0.05 - 0.5 dB

0.01 dB

 

 

 

 

32

CHAPTER 4

THEORY AND DESIGN

4.1Introduction

Designing a pulse FMCW radar is a complicated task which involves many variables concerning maximum detectable range, relative velocity, noise considerations, necessary transmitter power and the final interpretation of the received information. Of course, some of these variables are constrains regarding to the application requirements of the system and some of the variables are to be defined after the

design.

 

 

The pulse FMCW

radar system will be used to

measure

the distance of the

target in a maximum range

of 1000

meters. The radar must be designed to have the maximum detectable range longer than 1000 meters. Target in the system is an infinite obstacle and stationary. Small size and lightweight is also the primary requirements.

Throughout this chapter some design issues are given and a simplified test technique for the radar system using surface acoustic wave (SAW) devices is given as well. The block diagram of the FMCW radar has already been given in Figure (2.5). Block diagram for pulse FMCW radar is given in Figure (4.1).

33

Voltage

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Controlled

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Oscillator

Directional

 

 

 

 

 

Circulator

 

 

 

 

(VCO)

 

 

 

 

 

 

Antenna

 

 

 

 

Coupler

 

Power

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Amplifier

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Switch

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Band Pass

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Filtering and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LNA

 

 

 

 

Frequency

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Modulator

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LO

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Amplifier

 

Mixer

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IF

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DSP

 

 

 

 

 

 

 

Band Pass Filtering and Beat

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Frequency Amplifying

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fpass= fbmin - fbmax

 

 

 

 

Data Acquisition Systems

(Computer, Display, VTR)

Figure 4.1 Pulse FMCW radar block diagram

4.2Back Scattering From Target

The system will be able to measure the distance of the targets within 1000 meters range. The target is the earth’s surface. The radar itself can rotate both on the and axes of the spherical coordinate system but rotation is limited to 90 degrees on the axis. However, ground surface extends to infinity in dimension compared to the illumination area of the radar. Thus, rotation on the axis does not affect the illuminated area of the target by radar which has a uniform beamwidth on the and axes. Radar and target can be seen in the Figure (4.2).

34

 

R2

 

 

 

 

 

 

R

 

 

 

 

 

 

 

R1

 

 

0 0+ B/2 0- B/2

 

 

 

 

 

 

Radar

d

 

Target

 

 

 

 

Figure 4.2 Angle of incidence

 

The azimuth beamwidth along R is denoted by B and the azimuth beamwidths along the cuts 0+ B/2 and 0- B/2 are 1 and 2, also assumed to be equal ( 1 = 2 = B). To calculate the power related issues we must define the illuminated area

( S) with respect to angle of incidence ( ), beamwidth of

the antenna ( B) and distance from target (d). The illuminated area by the radar ( S) can be calculated from Equation (4.1).

 

R θrad

rad

R1 + R2

 

d 2ΦradB

 

rad

(4.1)

S = cos θ

ΦB

2

cos2 θ

θ

 

 

 

Received power at the antenna port ( Pr), by the reflections of the transmitted signal from the illuminated surface of the target ( S), can be expressed by Equation (4.2)

Pr =

P G 2

(θrad )λ2

σ

0

S

(4.2)

t

0

 

 

 

()3 R4

 

 

 

 

 

 

 

 

 

 

35

 

R

 

 

 

S

R2

 

 

 

 

 

 

R

 

 

 

 

 

 

R1

d

Radar

Target

Figure 4.3 Illuminated area

Radar Cross Section (RCS) of the target can be approximated as an exponential function given in Equation (4.4) [10]

RCS = σ0

S =

 

γ 0 (θ) cos(θ) S

 

(4.3)

 

 

 

Ψ(θ) = −14(1 −

e

− 0.

)

γ 0 (θ)

= 10

Ψ (θ )10

(4.4)

 

 

 

o is called the radar land reflectivity. o is usually expressed in dB(m2/m2). o has a strong dependency to the type of the surface (roughness) especially for the lower microwave frequencies and vary between -3 dB to -29 dB for grazing angles 7 to 70o. The median value is -14 dB which is the average of the various resulted from experiment. For the grazing angles greater than 65o, o so does o rapidly increases to a value of 0 to 15 dB (m2/m2). The maximum values are dominant for the urban areas. Land reflectivity

depends on the type of surface, frequency and angle

of

incidence ( ). Land reflectivity is maximum for angle

of

36

 

incidence = 0o and falls off rapidly as the increases [10].

The gain pattern of the antenna with gain G can be

given as

 

G(θrad ) = Gfn2 (θ)

(4.5)

fn (θ) is the normalized antenna pattern in elevation plane and can be approximated by a Gaussian function normalized to 0 dB. Normalized antenna pattern equals to -3 dB in Equation [4.6] when is equal to half of the beamwidth.

 

f (θ) =

−0.15 × 21.5

×

(θ − θ

0

/ θ

B

)1.5

dB

(4.6)

 

n

 

 

 

 

 

 

 

 

fn( )(dB)

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

-5

 

 

 

 

 

 

 

 

 

 

 

-10

 

 

 

 

 

 

 

 

 

 

 

-15

-150

-100

-50

0

50

 

100

150

200

-200

 

(Degrees)

Figure 4.4 Normalized antenna field pattern

37

Substituting Equation (4.1), (4.3), (4.5) in the Equation (4.2), the received echo power at the antenna port ( Pr) can be found as in Equation (4.7).

 

 

 

 

 

Pr =

Pt G2fn4

(θ) λ20

γ0 (θ) d2 ΦradB

 

θrad

 

 

(4.7)

 

 

 

 

 

 

 

 

 

 

(4π)3R4 cos(θ)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Replacing R, and rad ;

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d

 

 

 

rad

 

 

 

π

 

rad

 

 

π

 

 

 

(4.8)

 

 

 

R =

 

 

 

 

 

, θ

 

=

 

 

 

θ, ΦB

=

 

 

ΦB

 

 

 

cos(θ)

 

 

 

 

180

 

 

 

 

 

 

 

 

180

 

 

 

 

 

 

 

we finally get Equation (4.9).

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pr

 

 

Pt G2

 

 

λ20 ΦB

 

 

 

 

 

2

4

 

 

 

2

 

 

(4.9)

 

 

 

 

=

 

 

 

 

 

 

 

 

(π 180)

fn (θ) γ0

(θ) cos

(θ)

 

 

 

 

θ

 

 

(4π)3d2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pr

is the

angular

distribution

 

of the

received echo

power

 

θ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

reflected from the target. Power received from an angle of incidence from an angular width of is;

 

 

 

θ +

θ

 

 

 

 

 

 

θ + θ

 

Pr (θ, θ +

 

θ) =

dPr.dθ

=

Q Y(θ′).dθ′

(4.10)

 

 

 

θ

 

 

 

 

 

 

 

θ

 

where;

 

 

 

 

 

 

 

 

 

 

 

 

 

P G 2

λ2

Φ

B

 

π

2

 

Q =

 

t

0

 

 

 

 

 

 

 

(4.11)

 

()3d 2

 

 

 

 

 

 

 

 

180

 

 

Y(θ)

= f 4

(θ) γ

0

(θ) cos2

(θ)

(4.12)

 

 

n

 

 

 

 

 

 

 

 

 

4.3Echo Power Angular Distribution

Angular distribution (density) of the received echo

signal at the antenna of the system is plotted using Equation (4.10), changing from -10o to 70o for different Q values corresponding to distance of 100, 500 and 1000

meters. The MATLAB (version 6.5) “m files” necessary to plot the angular distribution are given in Appendix C. Two source

38

codes (m files) for MATLAB in Appendix C, calculates the angular distribution of the received echo for = 1o using two different techniques and results are very close to each other.

By using recursive adaptive Simpson quadrature

in the

m file named “Pr.m”,

integral is calculated with an error of

less than e-6. For m

file “directPr.m” line integral

from

to

+ did not evaluated and is taken directly as 1 and

Pr

calculated for . Figure (4.5) is the angular

distribution of the received echo power (dBm) in =1o angular width.

Frequency range of the system is between 800-900 MHz and for the calculations of the angular distribution of the received echo power, center frequency is taken as 850 MHz. From Figure (4.5) we can conclude the received echo signal will be maximum -50 dBm and the minimum received signal will be approximately -100 dBm at grazing angle of 30 degrees. The rain and atmospheric attenuations can be neglected at this frequency [1]. The output power transmitted at the antenna (Pt) is taken as 30 dBm (1W) and the elevation and azimuth beamwidths of the antenna ( B, B) are taken as both 80o and the gain of the antenna (G) is taken as 8 dB.

39

Pr,dBm ( =1o), o=30o

 

 

 

 

 

 

-55

 

 

 

 

 

 

 

 

-60

 

 

 

 

 

 

 

 

-65

 

 

d= 100m, Q=6.07x10-6

 

 

-70

 

 

 

 

 

 

 

 

-75

 

 

 

 

 

 

 

 

-80

 

 

d= 500m, Q=2.43x10-7

 

 

 

 

 

 

 

 

 

 

-85

 

 

 

 

 

 

 

 

-90

 

 

 

 

 

 

 

 

-95

 

 

d= 1000m, Q=6.07x10-8

 

 

-100

 

 

 

 

 

 

 

 

-105

0

10

20

30

40

50

60

70

-10

 

 

 

 

(degrees)

 

 

 

 

Figure 4.5 Angular distribution of the echo power at the antenna port

4.3Echo Power Spectrum

Echo power spectrum of the radar determined by replacing the angular information with frequency information, which can be derived using Equation (2.11).

fb

=

K.R , K =

4fm

f

 

 

(4.13)

c

 

 

 

 

 

 

K is the ranging sensitivity in Hz/m.

R is the change in the radial distance when the angle

of incidence is change by . From Figure (4.3);

tan(θ) =

sin(θ)

=

 

R

 

, cos(θ) =

K.d

(4.14)

cos(θ)

 

R. θrad

 

f

 

 

 

 

 

 

 

 

 

 

 

b

 

 

R =

fb

 

R

=

fb

 

(4.15)

 

K

 

K

 

 

 

 

 

 

 

40

 

 

 

 

 

 

rad

=

 

R

 

 

=

 

R cos( )

=

 

K.d. fb

 

(4.16)

 

 

 

R tan

 

R sin( )

 

 

f 2

sin( )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sin( ) =

1 − cos

2

( ) =

 

1 −

 

K.d

 

(4.17)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fb

 

 

 

 

 

 

 

rad

=

 

 

 

K.d. fb

 

 

 

 

 

 

 

 

(4.18)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 1 −

(K.d f

)2

 

 

 

 

 

 

 

 

 

 

 

 

f

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

Substituting rad in Equation (4.9) we get;

 

 

 

 

Pr

 

= Qfn4 ( ) 0

( )

 

 

 

 

 

(K.d )3

 

 

 

 

(4.19)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fb

 

 

1 − (K.d f )2

 

 

 

 

 

 

 

 

 

f 4

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

 

 

b

 

 

 

For the values of we can use the inverse cosine function which is shown in Equation (4.20).

 

 

180

 

 

 

 

(4.20)

θ =

1 K.d

 

 

π

 

cos

 

f

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

The received echo

power

(dBm)

is

calculated and

plotted using MATLAB. “beatvariation.m” given in Appendix C is the source code for Figure (4.6) and (4.7). Center frequency is taken as 850 MHz, and K is equal to 1334 and 125 Hz/m. To calculate the echo power Pr is integrated overfrom 1 to 2 .

P12 = Pr (θ1, θ2 )

θ2

 

 

 

 

 

θ2

 

(θ′).dθ′

= dPr.dθ = Q Y

 

 

 

 

 

θ1

 

 

 

 

 

θ1

 

 

 

 

 

180

 

−1

 

 

K.d

 

 

 

θ1

=

 

 

cos

 

 

 

 

 

 

 

 

 

 

 

 

 

π

 

 

f

f

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

b

 

 

 

 

 

180

 

−1

 

 

K.d

 

 

 

θ2

=

 

 

cos

 

 

 

 

 

 

 

π

 

 

f

+

f

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

 

b

 

 

(4.21)

(4.22)

(4.23)

41