
- •1. Общее понятие об обмене веществ. Катаболизм и анаболизм. Основные этапы. Значение атф и других макроэргических соединений в обеспечении энергией процессов жизнедеятельности.
- •2. Производные моносахаридов, образующиеся в организме (фосфорные эфиры, уроновые кислоты, аминосахара), их биологическое значение.
- •3. Биосинтез холестерина. Схема процесса. Атеросклероз и связь нарушений метаболизма холестерина и липопротеинов.
- •4. Минеральные вещества крови (фосфор, кальций, натрий, калий, железо) Участие в обмене. Роль гормонов в регуляции обмена солей
- •1. Основные этапы биосинтеза белка. Роль нуклеиновых кислот, активация аминокислот. Рабочий цикл рибосомы.
- •2. Гетерополисахариды (классы гликозаминогликанов).Строение, распространение в организме и биологическая роль.
- •3. Структура ферментов. Активный центр. Механизм образования фермент-субстратного комплекса. Аллостерические участки, их биологическая роль.
- •4. Состав молока и роль в питании растущего организма. Сравнительная оценка состава коровьего и женского молока. Преимущества естественного вскармливания.
- •1. Свойства и биологическая роль белков. Белки как гидрофильные коллоиды. Реакции осаждения белков, использование реакций осаждения в медицинской практике. Методы очистки и разделения белков.
- •3. Понятие об энергии активации. Образование фермент-субстратного комплекса. Принципы количественного определения активности ферментов. Единицы активности.
- •4. Содержание и формы билирубина в крови. Диагностическое значение форм билирубина.
- •1. Белки как амфотерные электролиты. Механизм образования заряда. Изоэлектрическая точка белков. Свойства белков в изоэлектрическом состоянии.
- •2. Биосинтез и мобилизация гликогена, последовательность реакций. Биологическая роль. Регуляция активности фосфорилазы и гликогенсинтазы.
- •3. Основные сведения о кинетике ферментативных реакций. Факторы, влияющие на скорость ферментативных реакций.
- •4. Содержание глюкозы в крови. Возрастные особенности.
- •1. Гидролиз белков. Методы, условия, продукты гидролиза. Определение степени гидролиза белков. Использование гидролизатов в медицине.
- •2. Анаэробный распад глюкозы, последовательность реакций, локализация. Биологическая роль.
- •3. Стероидные гормоны, представители. Механизм действия. Особенности биосинтеза стероидных гормонов.
- •4. Содержание белков в плазме крови, возрастные особенности.
- •2. Роль анаэробного и аэробного распада глюкозы в мышцах. Судьба молочной кислоты.
- •3. Кофакторы и их связь с витаминами. Типичные примеры.
- •Строение коферментов
- •4. Содержание остаточного азота в крови. Компоненты остаточного азота.
- •1. Белки. Классификация белков. Характеристика сложных белков. Хромопротеины, классификация, строение, распространение.
- •Характеристика простых белков
- •2. Аэробное окисление углеводов, схема процесса. Образование пировиноградной кислоты из глюкозы, последовательность реакций. Челночные механизмы транспорта водорода.
- •3. Регуляция активности ферментов. Аллостерические механизмы, ограниченный протеолиз, химическая модификация ферментов. Биологическая роль регуляции активности ферментов
- •4. Возрастные особенности состава крови (белки, остаточный азот, глюкоза).
- •1. Нуклеопротеины. Современные представления о структуре и функции нуклеиновых кислот. Продукты их гидролиза.
- •2. Окислительное декарбоксилирование пировиноградной кислоты. Последовательность реакций, связь с дыхательной цепью.
- •3. Активаторы и ингибиторы ферментов. Типы ингибирования. Применение ингибиторов в качестве лекарственных средств.
- •4. Минеральные вещества крови. Распределение между плазмой и эритроцитами.
- •1. Днк. Первичная, вторичная и третичная структура днк. Биологическая роль днк.
- •2. Цикл трикарбоновых кислот, последовательность реакций, связь с дыхательной цепью. Биологическое значение.
- •3. Классификация ферментов. Важнейшие представители основных классов.
- •Классификация и номенклатура ферментов
- •4. Содержание кальция и фосфора в плазме крови.
- •1. Рнк. Первичная и вторичная структура рнк. Типы рнк, особенности строения, локализация в клетке. Биологическая роль.
- •2. Строение коэнзима а, участие в обмене веществ.
- •3. Энергетический обмен. Стадии катаболизма белков, липидов, углеводов. Источники восстановительных эквивалентов для электрон-транспортной цепи. Роль митохондрий в окислении водорода
- •4. Изменение содержания белков, остаточного азота, глюкозы крови при заболеваниях.
- •1. Гликопротеины. Их строение, классификация, представители гликопротеинов, биологическая роль.
- •2. Пентозофосфатный путь окисления глюкозы, основные этапы процесса. Биологическое значение цикла. Наследственные нарушения
- •3. Митохондриальная цепь окисления водорода. Образование электрохимического трансмембранного потенциала, его использование.
- •4. Анализ желудочного сока.
- •1. Липопротеины. Их строение, классификация. Состав и функции липопротеинов крови.
- •2. Роль печени в обмене углеводов. Глюконеогенез, субстраты для синтеза, схема реакций.
- •3. Тканевое дыхание, последовательность реакций. Продукция энергии в дыхательной цепи.
- •4. Формы кислотности желудочного сока.
- •1. Хромопротеины, их строение, биологическая роль. Основные представители хромопротеинов.
- •2. Аэробное окисление углеводов, схема процесса. Образование пировиноградной кислоты из глюкозы, последовательность реакций. Челночные механизмы транспорта водорода.
- •3. Надн-оксидазная система: над-зависимые дегидрогеназы, флавиновые дегидрогеназы, железосероцентры. Строение, их роль в транспорте электронов.
- •4. Возрастные особенности состава желудочного сока.
- •1. Заменимые и незаменимые аминокислоты. Потребность организма в белках в зависимости от возраста. Белковый минимум. Формы баланса азота в организме. Возрастные особенности.
- •2. Биосинтез глюкозы (глюконеогенез). Возможные предшественники, последовательность реакций. Глюкозо-лактатный цикл (цикл Кори). Физиологическое значение.
- •3. Цикл кислорода дыхательной цепи. Цитохромоксидаза, строение, биологическая роль.
- •4. Физико-химические показатели мочи. Возрастные особенности.
- •1. Переваривание белков в желудочно-кишечном тракте. Промежуточные и конечные продукты гидролиза белков. Использование аминокислот в тканях.
- •2. Сахарный диабет. Характер нарушений обменных процессов при сахарном диабете. Нарушение уронатного пути использования глюкозы как основа нарушений структуры гликозаминогликанов.
- •3. Образование макроэргических соединений в цепи тканевого дыхания. Характеристика процесса с помощью коэффициента р/о. Разобщение окисления водорода и фосфорилирования адф в дыхательной цепи.
- •4. РН мочи в норме и при патологии.
- •1. Процессы превращения аминокислот в толстом кишечнике под влиянием гнилостных бактерий. Обезвреживание продуктов гниения.
- •2. Наследственные нарушения обмена моносахаридов и дисахаридов: галактоземия, фруктозурия, непереносимость дисахаридов. Гликогенозы и агликогенозы.
- •3. Окислительное и субстратное фосфорилирование в процессе биологического окисления.
- •4. Пигменты мочи и их происхождение.
- •1. Основные пути использования аминокислот после всасывания. Синтез креатина, креатинфосфата, биологическая роль. Образование креатинина.
- •2. Современные данные об активных формах углеводов, жирных кислот и аминокислот.
- •3. Надн-оксидазная система: убихинон, цитохромы в, с1,с. Строение, их роль в транспорте электронов.
- •4. Органические вещества мочи, их происхождение.
- •1. Роль нуклеиновых кислот в биосинтезе белка. Характеристика генетического кода. Строение и роль т-рнк.
- •2. Взаимосвязь белкового, углеводного и липидного обменов. Роль ключевых метаболитов глюкозо-6-фосфата, пировиноградной кислоты и ацетил-КоА.
- •3. Образование со2 в процессе биологического окисления. Типы декарбоксилирования в цикле трикарбоновых кислот.
- •4. Азотсодержащие вещества мочи. Возрастные особенности.
- •1. Основные этапы биосинтеза белков (активация аминокислот, фазы трансляции, участие рибосом).
- •2. Липиды, классификация и распространение. Химическая природа, свойства и биологическая роль триацилглицеринов.
- •3. Микросомальное и митохондриальное окисление, сходства и различия. Пути использования кислорода. Токсичность кислорода. Механизмы защиты.
- •4. Содержание мочевой кислоты в крови. Причины гиперурикемии.
- •2. Классификация глицерофосфолипидов, химическое строение и биологическая роль в организме.
- •3. Витамины и их значение в жизнедеятельности человека. Классификация витаминов. Участие в обмене веществ.
- •4. Индикан мочи, значение исследования.
- •1. Основные типы превращений аминокислот в тканях (дезаминирование, трансаминирование, декарбоксилирование).
- •2. Стерины, стериды, их представители. Биологическая роль холестерина как предшественника других стеринов.
- •3. Витамин с. Химическая природа, распространение, участие в обменных процессах.
- •4. Парные соединения мочи.
- •1. Непрямое дезаминирование аминокислот, биологическое значение. Роль глутаматдегидрогеназы. Виды аминотрансфераз, их специфичность.
- •Специфичность.
- •2. Переваривание и всасывание простых и сложных липидов в желудочно-кишечном тракте. Возрастные особенности.
- •3. Витамин в1. Химическая природа, распространение, участие в обменных процессах.
- •4. Минеральные вещества мочи.
- •1. Образование и обезвреживание аммиака. Биосинтез мочевины, последовательность реакций. Роль печени в мочевинообразовании. Возрастные особенности
- •2. Судьба всосавшихся простых и сложных липидов. Жировые депо. Липотропные вещества и их роль.
- •3. Витамин в2. Химическая природа, распространение, участие в обменных процессах.
- •4. Реакции на патологические составные части мочи (белок, глюкоза, кровь, ацетоновые тела). Методы экспресс-диагностики.
- •1. Процессы образования конечных продуктов обмена простых белков. Основные источники аммиака. Роль глутамина в обезвреживании аммиака и синтезе ряда соединений.
- •3. Витамин рр. Химическая природа, распространение, участие в обменных процессах.
- •4. Способы определение белка в моче.
- •1. Распад пуриновых и пиримидиновых азотистых оснований. Конечные продукты, пути выведения.
- •2. Желчные кислоты, строение, свойства. Участие в переваривании и всасывании липидов. Конъюгация желчных кислот, биологическая роль
- •3. Витамин в6. Химическая природа, распространение, участие в обменных процессах.
- •4. Глюкозурия и ее причины.
- •2. Окисление высших жирных кислот. Последовательность реакций β-окисления. Связь окисления жирных кислот с цитратным циклом и дыхательной цепью.
- •3. Витамин а. Химическая природа, распространение, участие в обменных процессах.
- •4. Соединительная ткань. Классификация. Клеточные элементы. Основные белки соединительной ткани. Межклеточный матрикс, представление о гликопротеинах соединительной ткани.
- •1. Обмен триптофана. Образование серотонина, биологическая роль. Кинурениновый и серотониновый пути превращения триптофана.
- •2. Биосинтез жирных кислот, последовательность реакций. Регуляция биосинтеза.
- •3. Витамин d. Химическая природа, распространение, участие в обменных процессах.
- •4. Кетонурия и ее причины.
- •1. Переваривание и всасывание нуклеопротеинов в желудочно-кишечном тракте. Судьба всосавшихся продуктов.
- •2. Биосинтез триацилглицеринов, способы синтеза, последовательность реакций. Роль инсулина, адреналина, глюкогона в регуляции синтеза. Значение процесса.
- •3. Гормоны и их классификация. Представление об основных механизмах гормональной регуляции метаболизма.
- •4. Креатинурия и ее причины.
- •1. Пути распада пуриновых и пиримидиновых нуклеотидов в тканях. Конечные продукты. Нарушение обмена нуклеотидов. Биохимические основы подагры.
- •2. Переваривание и всасывание липидов в желудочно-кишечном тракте.
- •3. Гормоны щитовидной и паращитовидных желез. Химическое строение и участие в обменных процессах.
- •4. Протеинурия и ее причины.
- •1. Биосинтез днк. Днк-полимеразы. Повреждения и репарация днк. Наследственные заболевания, связанные с нарушением репарации днк.
- •2. Буферные системы крови. Роль буферных систем в поддержании гомеостаза рН. Кислотно-основное состояние. Понятие об ацидозе и алкалозе.
- •3. Гормоны надпочечников. Глюкокортикоиды и минералокортикоиды. Химическое строение и участие в обменных процессах.
- •4. Гематурия и гемоглобинурия, их причины.
- •1. Биосинтез рнк. Процессинг матричной и транспортной рнк. Обратная транскрипция, биологическая роль.
- •2. Гемоглобин, строение и свойства. Возрастные особенности. Понятие об аномальных гемоглобинах.
- •3. Функции почек. Транспорт веществ в процессе секреции и реабсорбции. Реабсорбция глюкозы, аминокислот, профильтровавшихся белков. Пороговые и беспороговые вещества.
- •4. Фенилкетонурия, алкаптонурия. Причины их возникновения.
- •1. Биосинтез пуриновых нуклеотидов. Роль фолиевой кислоты. Синтез дезоксирибонуклеотидов, роль системы тиоредоксина. Синтез нуклеозидтрифосфатов.
- •2. Депонирование и мобилизация жиров в жировой ткани. Транспорт и
- •3. Ферменты сыворотки крови. Классификация. Диагностическое значение их определения.
- •4. Роль воды в организме. Содержание и распределение воды в тканях. Возрастные особенности. Регуляция водного обмена.
- •1. Биосинтез пиримидиновых нуклеотидов. Особенности синтеза тимидиловых нуклеотидов, тимидилатсинтетаза, роль тетрагидрофолиевой кислоты (тгфк). Нарушение синтеза пиримидиновых нуклеотидов.
- •2. Механизмы защиты от активных форм кислорода. Ферментные и неферментные звенья антиоксидантной защиты.
- •3. Пантотеновая кислота. Химическая природа, распространение, участие в обменных процессах.
- •4. Гомеостатическая функция почек. Участие почек в регуляции кислотно-основного состояния. Процессы ацидо- и аммониогенеза. Титруемая кислотность мочи. Аммонийные соли.
- •1. Распад хромопротеинов в тканях. Фазы превращений билирубина. Исследование желчных пигментов с диагностической целью.
- •2. Биосинтез холестерина, последовательность реакций до образования мевалоновой кислоты, представление о дальнейших этапах. Транспорт холестерина. Холестерин и атеросклероз.
- •3. Гормоны поджелудочной железы. Химическое строение и участие в обменных процессах.
- •4. Мышечная ткань. Химический состав, возрастные особенности. Химизм мышечного сокращения. Источники энергии.
- •3. Гомополисахариды (крахмал и гликоген). Химическое строение, свойства. Особенности распада в желудочно-кишечном тракте и тканях.
- •4. Нервная ткань. Химический состав, особенности обмена. Возрастные особенности.
- •1. Хромопротеины, их строение, биологическая роль. Основные представители хромопротеинов.
- •2. Аэробное окисление углеводов, схема процесса. Образование пировиноградной кислоты из глюкозы, последовательность реакций. Челночные механизмы транспорта водорода.
- •3. Гормоны половых желез. Химическое строение и участие в обменных процессах.
- •4. Индикан мочи, происхождение, диагностическая роль.
2. Строение коэнзима а, участие в обмене веществ.
HS-КоА входит в мультиферментный комплекс окислительного декарбоксилирования ПВК. Участвует в образовании активных форм жирных кислот (бета-окисление). Строение – пантотеновая кислота, тиоэтанол амин, АМФ, в третьем положении дополнительный остаток фосфорной кислоты. Очень важен АцКоА – это промежуточный продукт окисления белков, жиров, углеводов. Образуется при окислительном декарбоксилировании ПВК, он запускает ЦТК. Из а-кетоглутората в ЦТК в процессе окислительного декарбоксилирования образуется сукцинилКоА, который идет на синтез гема.
Кофермент А (КоА) — кофермент ацетилирования; один из важнейших коферментов; принимает участие в реакциях переноса ацильных групп. Молекула КоА состоит из остатка адениловой кислоты, связанной пирофосфатной группой с остатком пантотеновой кислоты, соединённой пептидной связью с остатком β-меркаптоэтаноламина. С КоА связан ряд биохимических реакций, лежащих в основе окисления и синтеза жирных кислот, биосинтеза жиров, окислительных превращений продуктов распада углеводов. Во всех случаях КоА действует в качестве промежуточного звена, связывающего и переносящего кислотные остатки на другие вещества. При этом кислотные остатки в составе соединения с КоА подвергаются тем или иным превращениям, либо передаются без изменений на определённые метаболиты.
3. Энергетический обмен. Стадии катаболизма белков, липидов, углеводов. Источники восстановительных эквивалентов для электрон-транспортной цепи. Роль митохондрий в окислении водорода
Совокупность окислительных реакций, происходящих в живых организмах и обеспечивающих их энергией и метаболитами, необходимыми для осуществления процессов жизнедеятельности, называется биологическим окислением. Функции биологического окисления: 1) энергетический обмен, поддержание t тела, мышечная активность, осмотическая работа, транспорт, биосинтез 2) окисление ксенобиотиков 3) окисление токсических продуктов обмена 4) синтез ключевых метаболитов. Основными источниками энергии для организма являются белки, липиды и углеводы, поступающие с пищей. Три стадии катаболизма: 1) специфическое превращение в мономеры – аминокислоты, моносахариды, глицерин, жирные кислоты. 2) образование унифицированных продуктов – ПВК и АцКоА (моносахариды через ПВК). 3) АцКоА в ЦТК образуется СО2, вода; 3НАДН, которые в дых цепи дают воду и 3 АТФ; ФАД Н2, который в дых цепи дает воду и 2 АТФ. Источники восстановленных эквивалентов это ЦТК, все окислительно-восстановительные реакции, бета-окисление жирных кислот. В дых цепь поступает 3НАДН и ФАДН2, они образуются в следующих реакциях: НАДФН+НАДНАДФ+НАДН (трансдегидрогеназа).
1 стадия. Расщепление макромолекул на простые субъединицы.
Пища – основной источник Е.
Пища с Б, Ж, У попадает в ЖКТ, далее Б → амк, У→простые сахара, глю, Ж→ глицерин+ж.к.
2 стадия. Образование унифицированных продуктов.
Амк(NH3)→пируват, амк(кетогенный амин)→ацетилКоА
Глю(гликолиз)→ПВК
Глицерин+ж.к.(β-окисление)+СН3-СО-S-КоА→ ацетилКоА
3 стадия. При полном окислении ацетилКоА до воды и угл.газа, образуется НАДН и ФАДН, что обеспечивает синтез АТФ в дыхательной цепи митохондрий.
ацетилКоА→ ЦТК +СО2
ЦТК → восстанвленный потенциал в виде НАДН,ФАДН → траеспорт электронов → дыхательная цепь+Н2О+АТФ → конечные продукты метаболизма.
Источники АТФ: дых.цепь митохондрий(окислит.фосфорилирование), ЦТК, β-окисление ж.к., окислительное декарбоксилирование α-кетокислот, гликолиз.
Источники НАДН: ЦТК(изоцитрат-ДГ, окисл.декарб-ие α-кетоглутарата, малатдегидрогеназа), гликолиз(глироальдегид-3-ф-ДГ), β-окисление ж.к. (ацетил-КоА-ДГ), окисл.декар-ие α-кетокислот.
Источники ФАДН2: ЦТК(сукцинат-ДГ), β-окисление ж.к. (ацетил-КоА-ДГ), НАДН-дегидрогеназа –вторичная флавиновая ДГ(отщепление Н не от субстрата, а от НАДН+)
Митохондрии - основной источник АТФ в клетке. Митохондрия имеет две мембраны: наружную и внутреннюю. Наружная мембрана гладкая, а внутренняя им.крипты, содержимое митохондрии, окруженное ее внутренней мембраной - "матрикс митохондрии". Внутри митохондрии имеется замкнутая в кольцо длинная молекула ДНК и весь аппарат синтеза белков, в том числе собственные митохондриальные рибосомы. Реакции цикла Кребса происходят в жидкости, заполняющей митохондрию, окислительное фосфорилирование - в ее внутренней мембране. Здесь имеется пять типов белков дыхательной цепи, свободно перемещающихся в пределах этой мембраны. Их функция - медленное поэтапное "сжигание" атомов водорода, доставляемых переносчиками НАД·Н и ФАД·Н2 с образованием молекул воды. Это делается так: белок №1 отбирает у НАД·Н электрон атома водорода и передает его белку №2, тот - белку №3, и так далее, до белка №5. Белки №2 и 4 имеют небольшие размеры, поэтому в мембране они двигаются значительно быстрее .№1, 3 и 5, по сути дела, выполняют роль курьеров, разносящих электроны по назначению. При этом энергия электрона все время уменьшается. Белок №5 накапливает четыре таких электрона, а затем производит реакцию образования воды:4е- + О2 + 4 Н+ =2 Н2О. Энергию, выделяющуюся при прохождении электрона по дыхательной цепи, белки № 1, 3 и 5 расходуют на выбрасывание протонов изнутри митохондрии в пространство между ее мембранами. В этом пространстве создается положительный заряд, а внутри митохондрии - отрицательный. Протоны, накопившиеся между мембранами, в этой ситуации имеют существенную потенциальную энергию за счет притяжения к внутренней части митохондрии. Во внутренней мембране, кроме белков дыхательной цепи, имеются молекулы еще одного белка - АТФ-синтетазы. Они пропускают протоны внутрь митохондрии, используя их потенциальную энергию для синтеза АТФ.