
Контрольные / Пулькин КР / Cp_6__kopia
.pdfВариант 141
1. Дана система линейных уравнений: |
|
|
7x6 |
= 4; |
|||||
8 4x1 |
4x2 |
+ 7x3 |
7x4 |
+ 3x5 |
|||||
> |
3x1 |
+ 3x2 |
|
5x3 |
+ 5x4 |
|
2x5 |
+ 5x6 |
= 3; |
6x1 + 6x2 |
|
9x3 + 9x4 |
|
3x5 + 9x6 |
= 6; |
||||
> |
|
|
|
|
|
|
|
|
|
< |
|
|
|
|
|
|
|
|
= 2: |
> 3x1 3x2 + 5x3 4x4 + 4x5 2x6 |
|||||||||
> |
|
|
|
|
|
|
|
|
|
:
а) Доказать, что она совместна.
б) Найти фундаментальную систему решений соответствующей однородной системы.
в) Найти общее решение исходной системы и записать его в век-
торной форме. |
|
|
|
||
2. Даны векторы: |
|
|
|
||
g1 |
= |
f3; 2; 5; 5; 6g; |
g2 |
= |
f4; 3; 7; 6; 6g; |
g3 |
= |
f5; 4; 9; 7; 6g; |
g4 |
= |
f4; 5; 9; 2; 6g: |
а) Найти размерность линейной оболочки, натянутой на эти векторы.
б) Найти какой-либо базис этой линейной оболочки.
в) Все заданные векторы выразить через найденный базис.
3. В двумерном пространстве R2 заданы две совокупности векторов
E = fe1; e2g; |
F = ff1; f2g : |
||
e1 |
= f2; 2g; |
f1 |
= f4; 6g; |
e2 |
= f5; 6g; f2 |
= f3; 4g; |
àтакже вектор x = f5; 6g.
а) Доказать, что E и F базисы R2. б) Найти матрицу перехода TE!F.
в) Найти координаты вектора x в базисе F.
ËÀ ÑÐ 6 2008
Вариант 142
1. Дана система линейных уравнений: |
|
|
|
|||
8 6x1 |
6x2 |
+ 5x3 |
4x4 |
+ 4x5 |
+ 8x6 |
= 5; |
8x1 |
+ 8x2 |
6x3 |
+ 5x4 |
6x5 |
9x6 |
= 3; |
> 4x1 4x2 + 4x3 3x4 + 2x5 + 7x6 |
= 7; |
|||||
> |
|
|
|
|
|
|
< |
|
|
|
|
|
= 3: |
> 5x1 + 5x2 3x3 + 3x4 3x5 3x6 |
||||||
> |
|
|
|
|
|
|
:
а) Доказать, что она совместна.
б) Найти фундаментальную систему решений соответствующей однородной системы.
в) Найти общее решение исходной системы и записать его в век-
торной форме. |
|
|
|
2. Даны векторы: |
|
|
|
g1 |
= f4; 3; 5; 2; 4g; g2 |
= |
f3; 2; 2; 2; 4g; |
g3 |
= f7; 5; 7; 4; 8g; g4 |
= |
f5; 4; 8; 2; 4g: |
а) Найти размерность линейной оболочки, натянутой на эти векторы.
б) Найти какой-либо базис этой линейной оболочки.
в) Все заданные векторы выразить через найденный базис.
3. В двумерном пространстве R2 заданы две совокупности векторов
E = fe1; e2g; |
F = ff1; f2g : |
||
e1 |
= f7; 6g; f1 |
= f5; 3g; |
|
e2 |
= f1; 1g; |
f2 |
= f3; 2g; |
àтакже вектор x = f2; 3g.
а) Доказать, что E и F базисы R2. б) Найти матрицу перехода TE!F.
в) Найти координаты вектора x в базисе F.
ËÀ ÑÐ 6 2008
Вариант 143
1. Дана система линейных уравнений: |
|
|
|
||||
8 2x1 |
+ 2x2 |
+ 4x3 |
5x4 |
5x5 |
+ 9x6 |
= 5; |
|
> |
3x1 |
+ 3x2 |
+ 6x3 |
7x4 |
7x5 |
+ 9x6 |
= 8; |
2x1 + 2x2 + 4x3 |
3x4 |
3x5 |
9x6 |
= 7; |
|||
> |
|
|
|
|
|
|
|
< |
|
|
|
|
|
|
= 7: |
> 2x1 2x2 3x3 + 2x4 + 5x5 + 9x6 |
|||||||
> |
|
|
|
|
|
|
|
:
а) Доказать, что она совместна.
б) Найти фундаментальную систему решений соответствующей однородной системы.
в) Найти общее решение исходной системы и записать его в век-
торной форме. |
|
|
2. Даны векторы: |
|
|
g1 |
= f7; 3; 3; 4; 5g; g2 |
= f5; 2; 3; 3; 4g; |
g3 |
= f8; 3; 6; 5; 7g; g4 |
= f7; 4; 3; 3; 2g: |
а) Найти размерность линейной оболочки, натянутой на эти векторы.
б) Найти какой-либо базис этой линейной оболочки.
в) Все заданные векторы выразить через найденный базис.
3. В двумерном пространстве R2 заданы две совокупности векторов
E = fe1; e2g; F = ff1; f2g :
e1 |
= f9; 7g; |
f1 |
= |
f3; 4g; |
e2 |
= f2; 1g; |
f2 |
= |
f5; 5g; |
àтакже вектор x = f8; 9g.
а) Доказать, что E и F базисы R2. б) Найти матрицу перехода TE!F.
в) Найти координаты вектора x в базисе F.
ËÀ ÑÐ 6 2008
Вариант 144
1. Дана система линейных уравнений: |
|
6x6 |
|
||||
8 2x1 |
+ 2x2 |
+ 3x3 |
3x4 |
+ 5x5 |
= 5; |
||
> |
2x1 |
+ 2x2 |
+ 3x3 |
4x4 |
+ 4x5 |
2x6 |
= 3; |
4x1 + 4x2 + 6x3 |
7x4 + 9x5 8x6 |
= 8; |
|||||
> |
|
|
|
|
|
|
|
< |
|
|
|
|
|
|
= 2: |
> 3x1 3x2 4x3 + 7x4 4x5 4x6 |
|||||||
> |
|
|
|
|
|
|
|
:
а) Доказать, что она совместна.
б) Найти фундаментальную систему решений соответствующей однородной системы.
в) Найти общее решение исходной системы и записать его в век-
торной форме. |
|
|
|
|
2. Даны векторы: |
|
|
|
|
g1 |
= f4; 3; 3; 3; 2g; |
g2 |
= |
f7; 5; 3; 3; 2g; |
g3 |
= f6; 5; 9; 9; 6g; |
g4 |
= |
f5; 4; 6; 6; 4g: |
а) Найти размерность линейной оболочки, натянутой на эти векторы.
б) Найти какой-либо базис этой линейной оболочки.
в) Все заданные векторы выразить через найденный базис.
3. В двумерном пространстве R2 заданы две совокупности векторов
E = fe1; e2g; |
F = ff1; f2g : |
||
e1 |
= f6; 7g; f1 |
= f9; 9g; |
|
e2 |
= f3; 5g; |
f2 |
= f3; 2g; |
àтакже вектор x = f3; 8g.
а) Доказать, что E и F базисы R2. б) Найти матрицу перехода TE!F.
в) Найти координаты вектора x в базисе F.
ËÀ ÑÐ 6 2008
Вариант 145
1. Дана система линейных уравнений: |
|
|
|
||||
8 6x1 |
+ 6x2 |
3x3 |
+ 7x4 |
+ 4x5 |
+ 4x6 |
= 4; |
|
> |
8x1 |
+ 8x2 |
4x3 |
+ 9x4 |
+ 5x5 |
+ 6x6 |
= 6; |
4x1 + 4x2 |
2x3 + 4x4 + 2x5 + 4x6 |
= 4; |
|||||
> |
|
|
|
|
|
|
|
< |
|
|
|
|
|
|
= 4: |
> 7x1 7x2 + 3x3 8x4 7x5 2x6 |
|||||||
> |
|
|
|
|
|
|
|
:
а) Доказать, что она совместна.
б) Найти фундаментальную систему решений соответствующей однородной системы.
в) Найти общее решение исходной системы и записать его в век-
торной форме. |
|
|
|
2. Даны векторы: |
|
|
|
g1 |
= f3; 2; 4; 3; 2g; |
g2 |
= f4; 3; 5; 5; 2g; |
g3 |
= f5; 4; 6; 7; 2g; |
g4 |
= f7; 5; 9; 8; 4g: |
а) Найти размерность линейной оболочки, натянутой на эти векторы.
б) Найти какой-либо базис этой линейной оболочки.
в) Все заданные векторы выразить через найденный базис.
3. В двумерном пространстве R2 заданы две совокупности векторов
E = fe1; e2g; |
F = ff1; f2g : |
||||
e1 |
= |
f6; 1g; |
f1 |
= |
f3; 2g; |
e2 |
= |
f9; 4g; |
f2 |
= |
f6; 9g; |
àтакже вектор x = f9; 4g.
а) Доказать, что E и F базисы R2. б) Найти матрицу перехода TE!F.
в) Найти координаты вектора x в базисе F.
ËÀ ÑÐ 6 2008
Вариант 146
1. Дана система линейных уравнений: |
|
|
4x6 |
|
|
||||||
8 4x1 |
4x2 |
+ 4x3 |
+ 3x4 |
+ 6x5 |
= 7; |
||||||
> |
5x1 |
+ 5x2 |
|
5x3 |
|
4x4 |
|
6x5 |
+ 6x6 |
= |
8; |
6x1 + 6x2 |
|
6x3 |
|
5x4 |
|
6x5 + 8x6 |
= 9; |
||||
> |
|
|
|
|
|
|
|
|
|
|
|
< |
|
|
|
|
|
|
|
|
|
|
|
> 2x1 2x2 + 3x3 + 2x4 + 3x5 2x6 |
= 7: |
||||||||||
> |
|
|
|
|
|
|
|
|
|
|
|
:
а) Доказать, что она совместна.
б) Найти фундаментальную систему решений соответствующей однородной системы.
в) Найти общее решение исходной системы и записать его в век-
торной форме. |
|
|
|
||
2. Даны векторы: |
|
|
|
||
g1 |
= |
f4; 3; 3; 4; 5g; |
g2 |
= |
f5; 4; 3; 3; 4g; |
g3 |
= |
f3; 2; 3; 5; 6g; |
g4 |
= |
f6; 5; 3; 2; 3g: |
а) Найти размерность линейной оболочки, натянутой на эти векторы.
б) Найти какой-либо базис этой линейной оболочки.
в) Все заданные векторы выразить через найденный базис.
3. В двумерном пространстве R2 заданы две совокупности векторов
E = fe1; e2g; F = ff1; f2g :
e1 |
= f6; 5g; |
f1 |
= |
f3; 2g; |
e2 |
= f5; 4g; |
f2 |
= |
f4; 3g; |
àтакже вектор x = f5; 4g.
а) Доказать, что E и F базисы R2. б) Найти матрицу перехода TE!F.
в) Найти координаты вектора x в базисе F.
ËÀ ÑÐ 6 2008
Вариант 147
1. Дана система линейных уравнений: |
|
|
|
|
|
||||
8 7x1 |
7x2 |
6x3 |
3x4 |
+ 2x5 |
+ 6x6 |
= 4; |
|||
|
5x1 |
+ 5x2 |
+ 4x3 |
+ 2x4 |
3x5 |
|
4x6 |
= |
2; |
> 4x1 + 4x2 + 4x3 + 2x4 + 2x5 |
|
4x6 |
= 4; |
||||||
> |
|
|
|
|
|
|
|
|
|
< |
|
|
|
|
|
|
|
|
|
> |
9x1 + 9x2 + 9x3 + 4x4 + 4x5 7x6 |
= 5: |
|||||||
> |
|
|
|
|
|
|
|
|
|
:
а) Доказать, что она совместна.
б) Найти фундаментальную систему решений соответствующей однородной системы.
в) Найти общее решение исходной системы и записать его в век-
торной форме. |
|
|
|
|
2. Даны векторы: |
|
|
|
|
g1 |
= f3; 4; 5; 5; 8g; |
g2 |
= |
f4; 5; 5; 4; 8g; |
g3 |
= f5; 6; 5; 3; 8g; |
g4 |
= |
f6; 7; 5; 2; 8g: |
а) Найти размерность линейной оболочки, натянутой на эти векторы.
б) Найти какой-либо базис этой линейной оболочки.
в) Все заданные векторы выразить через найденный базис.
3. В двумерном пространстве R2 заданы две совокупности векторов
E = fe1; e2g; F = ff1; f2g :
e1 |
= f9; 5g; |
f1 |
= |
f3; 2g; |
e2 |
= f7; 4g; |
f2 |
= |
f8; 5g; |
àтакже вектор x = f4; 3g.
а) Доказать, что E и F базисы R2. б) Найти матрицу перехода TE!F.
в) Найти координаты вектора x в базисе F.
ËÀ ÑÐ 6 2008
Вариант 148
1. Дана система линейных уравнений: |
|
6x6 |
= 8; |
|||
84x1 |
+ 4x2 |
+ 6x3 |
9x4 |
+ 7x5 |
||
2x1 |
+ 2x2 |
+ 3x3 |
5x4 |
+ 3x5 |
2x6 |
= 6; |
>2x1 + 2x2 + 3x3 |
3x4 + 5x5 6x6 |
= 2; |
||||
> |
|
|
|
|
|
|
< |
|
|
|
|
|
|
>
>
:3x1 + 3x2 + 4x3 6x4 + 7x5 4x6 = 6:
а) Доказать, что она совместна.
б) Найти фундаментальную систему решений соответствующей однородной системы.
в) Найти общее решение исходной системы и записать его в векторной форме.
2. Даны векторы:
g1 = f8; 7; 8; 8; 3g; g2 = f7; 6; 6; 6; 3g; g3 = f3; 2; 2; 2; 3g; g4 = f5; 4; 2; 2; 3g:
а) Найти размерность линейной оболочки, натянутой на эти векторы.
б) Найти какой-либо базис этой линейной оболочки.
в) Все заданные векторы выразить через найденный базис.
3. В двумерном пространстве R2 заданы две совокупности векторов
E = fe1; e2g; F = ff1; f2g :
e1 |
= f1; 2g; |
f1 |
= |
f7; 8g; |
e2 |
= f4; 5g; |
f2 |
= |
f3; 3g; |
àтакже вектор x = f7; 5g.
а) Доказать, что E и F базисы R2. б) Найти матрицу перехода TE!F.
в) Найти координаты вектора x в базисе F.
ËÀ ÑÐ 6 2008
Вариант 149
1. Дана система линейных уравнений: |
2x5 |
|
|
|
|
|||
8 4x1 |
4x2 |
3x3 |
+ 3x4 |
+ 3x6 |
= 3; |
|||
4x1 |
+ 4x2 |
+ 3x3 |
4x4 |
+ 4x5 |
|
7x6 |
= |
8; |
> 8x1 8x2 6x3 + 3x4 + 2x5 |
|
6x6 |
= 9; |
|||||
> |
|
|
|
|
|
|
|
|
< |
|
|
|
|
|
|
|
|
> 7x1 7x2 5x3 + 5x4 5x5 + 5x6 |
= 6: |
|||||||
> |
|
|
|
|
|
|
|
|
:
а) Доказать, что она совместна.
б) Найти фундаментальную систему решений соответствующей однородной системы.
в) Найти общее решение исходной системы и записать его в век-
торной форме. |
|
|
|
||
2. Даны векторы: |
|
|
|
||
g1 |
= |
f4; 3; 8; 3; 5g; |
g2 |
= |
f5; 4; 8; 3; 5g; |
g3 |
= |
f3; 2; 8; 3; 5g; |
g4 |
= |
f6; 5; 8; 3; 5g: |
а) Найти размерность линейной оболочки, натянутой на эти векторы.
б) Найти какой-либо базис этой линейной оболочки.
в) Все заданные векторы выразить через найденный базис.
3. В двумерном пространстве R2 заданы две совокупности векторов
E = fe1; e2g; |
F = ff1; f2g : |
|||
e1 |
= f7; 8g; |
f1 |
= |
f4; 7g; |
e2 |
= f6; 3g; f2 |
= |
f5; 2g; |
àтакже вектор x = f7; 8g.
а) Доказать, что E и F базисы R2. б) Найти матрицу перехода TE!F.
в) Найти координаты вектора x в базисе F.
ËÀ ÑÐ 6 2008
Вариант 150
1. Дана система линейных уравнений: |
5x5 |
|
|
= 7; |
|||||
8 2x1 |
+ 2x2 |
2x3 |
3x4 |
+ 2x6 |
|||||
> |
3x1 |
+ 3x2 |
3x3 |
4x4 |
7x5 |
+ 4x6 |
= 9; |
||
3x1 |
|
3x2 + 3x3 + 2x4 + 5x5 |
|
8x6 |
= 3; |
||||
> |
|
|
|
|
|
|
|
|
|
< |
|
|
|
|
|
|
|
|
= 5: |
> 4x1 4x2 + 3x3 + 5x4 + 7x5 2x6 |
|||||||||
> |
|
|
|
|
|
|
|
|
|
:
а) Доказать, что она совместна.
б) Найти фундаментальную систему решений соответствующей однородной системы.
в) Найти общее решение исходной системы и записать его в век-
торной форме. |
|
|
|
2. Даны векторы: |
|
|
|
g1 |
= f4; 3; 4; 4; 4g; |
g2 |
= f7; 5; 8; 9; 8g; |
g3 |
= f9; 7; 8; 7; 8g; |
g4 |
= f6; 5; 4; 2; 4g: |
а) Найти размерность линейной оболочки, натянутой на эти векторы.
б) Найти какой-либо базис этой линейной оболочки.
в) Все заданные векторы выразить через найденный базис.
3. В двумерном пространстве R2 заданы две совокупности векторов
E = fe1; e2g; |
F = ff1; f2g : |
||
e1 |
= f1; 1g; |
f1 |
= f2; 3g; |
e2 |
= f4; 5g; f2 |
= f3; 4g; |
àтакже вектор x = f4; 7g.
а) Доказать, что E и F базисы R2. б) Найти матрицу перехода TE!F.
в) Найти координаты вектора x в базисе F.
ËÀ ÑÐ 6 2008