Добавил:
НЕ БОНПАРИ Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Орг. химия экз.docx
Скачиваний:
48
Добавлен:
10.02.2024
Размер:
9.17 Mб
Скачать

7. Типы связей в молекулах органических соединений. Σ- и π-связи. Гибридизация, понятие о молекулярных орбиталях.

В органических соединениях углерод всегда четырехвалентен. Преобладающим типом связи в молекулах органических соединений является ковалентная связь.

В случае, когда углерод связан с более электроотрицательным атомом (галогены, кислород, азот), связь может быть в значительной степени поляризована, а на атомах могут образовываться частичные положительные (на углероде) и отрицательные (на атомах галогенов, кислорода, азота) заряды. Однако степень ионности такой связи минимальна.

Вследствие неполярности связи С-С и С-Н преимущественным способом ее разрыва является гомолитический, когда пара электронов делится поровну между атомами. При таком разрыве связи образуются незаряженные, но очень реакционно-способные частицы с неспаренными электронами, называемые радикалами. Для алканов очень характерны реакции с промежуточным образованием радикалов.

σ-Связь — это связь, в которой перекрывание орбиталей происходит вдоль оси, соединяющей ядра атомов. σ-Связь может быть образована любыми типами орбиталей (s, p, d, гибридизованными). Между двумя атомами возможна только одна σ-связь.

π-Связь — это связь, в которой перекрывание орбиталей происходит в плоскости, перпендикулярной оси, соединяющей ядра атомов, сверху и снизу от оси связи.

π-Связь образуется при перекрывании только р- (или d) орбиталей, перпендикулярных линии связи и параллельных друг другу. π-Связь является дополнительной к σ-связи, она менее прочная и легче разрывается при химических реакциях.

Гибридизация орбиталей — это изменение формы и энергии некоторых электронов при образовании ковалентной связи, приводящее к более эффективному перекрыванию орбиталей и повышению прочности связей. Гибридизация орбиталей происходит всегда, когда в образовании связей участвуют электроны, принадлежащие к различным типам орбиталей.

8.Представление о механизмах реакций. Представление о промежуточных частицах: радикалы, карбокатионы, карбанионы. Классификация реагентов: радикалы, нуклеофилы, электрофилы.

МЕХАНИЗМ РЕАКЦИИ. Понятие используется в основном в двух смыслах. Для сложных реакций, состоящих из нескольких стадий, механизм реакции-это совокупность стадий, в результате которых исходные вещества превращаются в продукты.

Гомолитический разрыв связи — разрыв, когда каждому атому отходит по одному электрону. Характерен для обменного механизма образования ковалентной связи.

Гетеролитический разрыв связи — разрыв, когда в результате образуются положительно и отрицательно заряженные частицы, т.к. оба электрона из общей электронной пары остаются при одном из атомов. Характерен для донорно-акцепторного механизма образования ковалентной связи.

Радикал - группа атомов, переходящих без изменения из одного соединения в другое. Свободные радикалы — атомы или группы связанных между собой атомов, характеризующиеся наличием неспаренных электронов.

Карбкатион — частица, в которой на атоме углерода сосредоточен положительный заряд, атом углерода имеет вакантную p-орбиталь. Карбкатион — сильная кислота Льюиса, обладает электрофильной активностью.

Нуклеофил — реагент, образующий химическую связь с партнером по реакции (электрофилом) по донорно-акцепторному механизму, предоставляя электронную пару, образующую новую связь. Вследствие того, что нуклеофилы отдают электроны, они по определению являются основаниями Льюиса. В роли нуклеофилов теоретически могут выступать все ионы и нейтральные молекулы с неподеленной электронной парой.

Электрофил — реагент или молекула, имеющая свободную орбиталь на внешнем электронном уровне. Все электрофилы являются кислотами Льюиса.

!9. Энергетический профиль реакции; энергетический барьер реакции, энергия активации, энергия переходного состояния, тепловой эффект реакции. Кинетический и термодинамический контроль.

Энергетический профиль реакции - график зависимости потенциальной энергии от координаты реакции Активация вызывается повышением температуры, действием электрического поля, действием квантов света и т.д. Энергия активации Еа постоянна в данном температурном интервале и определяется механизмом реакции.

Разность между средним энергетическим уровнем молекулы и энергетическим уровнем реакции называется энергией активации или энергетическим барьером. Чем больше энергия активации (энергетический барьер), тем медленнее идет реакция. Энергия активации, разность между значениями средней энергии частиц (молекул, радикалов, ионов и др.), вступающих в элементарный акт химической реакции, и средней энергии всех частиц, находящихся в реагирующей системе. Переходное состояние — состояние системы, при котором уравновешены разрушенные и созданные связи. В переходном состоянии система находится в течение небольшого (10−15 с) времени. Энергия, которую необходимо затратить, чтобы привести систему в переходное состояние, называется энергией активации. В многоступенчатых реакциях, которые включают в себя несколько переходных состояний, энергия активации соответствует наибольшему значению энергии. После преодоления переходного состояния молекулы вновь разлетаются с разрушением старых связей и образованием новых или с преобразованием исходных связей. Оба варианта возможны, так как происходят с высвобождением энергии (это хорошо видно на рисунке, поскольку оба положения лежат энергетически ниже энергии активации). Существуют вещества, способные уменьшить энергию активации для данной реакции. Такие вещества называют катализаторами. В биологических реакциях в качестве катализаторов выступают ферменты. Тепловой эффект реакции — это энергия, которая выделяется или поглощается, когда химические вещества претерпевают превращения в процессе химической реакции. Этот параметр отражает изменение содержания энергии при превращении реактантов в продукты. Реакция может быть экзотермической (с выделением тепла) или эндотермической (с поглощением тепла). Очень часто одно то же вещество в данных условиях реакции может подвергаться конкурентным реакциям с образованием различных продуктов. Такие реакции отображаются диаграммой (рис. 6.):

Диаграмма свободной энергии конкурирующих реакций: А – исходные вещества; В и С – продукты реакций. Если ни одна из конкурентных реакций не является обратимой, то продукт С должен получаться в большом количестве. Такой продукт называют кинетически контролируемым. Если реакции обратимы, соотношение продуктов может быть иным. Если остановить реакцию задолго до наступления положения равновесия, то в смеси будет больше продукта, который образуется быстрее, т.е. С. Такую реакцию называют кинетически контролируемой. Если позволить реакции достичь равновесия, то преобладающим или единственным продуктом будет термодинамически более стабильный (продукт В). В этом случае продукт С, образующийся первым, претерпевает обратное превращение в А и затем в В. В таких случаях продукт В называют термодинамически контролируемым.

Соседние файлы в предмете Органическая химия