
- •1.Состав органических веществ, их многообразие. Место органической химии в системе естественных наук. Источники органических соединений.
- •4.Основные признаки классификации органических веществ. Основные классы органических веществ.(с 5)
- •5.Номенклатура органических соединений. Основные принципы построения названий органических соединений. С 27
- •7. Типы связей в молекулах органических соединений. Σ- и π-связи. Гибридизация, понятие о молекулярных орбиталях.
- •8.Представление о механизмах реакций. Представление о промежуточных частицах: радикалы, карбокатионы, карбанионы. Классификация реагентов: радикалы, нуклеофилы, электрофилы.
- •10.Кислоты и основания (Бренстед, Льюис). Сопряженные кислоты и основания. Кислотно-основные равновесия. Константа кислотной ионизации и ее показатель (рКа)
- •11.Взаимное влияние атомов в молекулах, ионах, радикалах. Электронные и пространственные эффекты в органических реакциях (индуктивный эффект, эффект поля, мезомерный эффект, гиперконьюгация).
- •13.Гомологический ряд, номенклатура, электронное строение, sp3-гибридизация и физические свойства алканов.(с 26)
- •14.Химические свойства алканов. Общие представления о механизме цепных радикальных реакций замещения в алканах (на примере реакции галогенирования).
- •15.Номенклатура, структурная и пространственная изомерия, электронное строение, sp2-гибридизация и физические свойства алкенов.
- •17.Химические свойства алкенов: реакции присоединения галогенов, галогеноводородов, воды. Правило Марковникова и его объяснение.
- •18.Представление о стереохимии присоединения галогенов у алкенов. Перегруппировки карбокатионов. Реакции радикального присоединения (по Харашу).
- •20.Окислительное расщепление алкенов (восстановительный и окислительный озонолиз). Гидроборирование алкенов и использование в синтезе спиртов.
- •22.Аллильное хлорирование алкенов, механизм. Аллильный радикал. Окисление алкенов кислородом воздуха (пероксидное окисление).
- •23.Номенклатура, классификация, изомерия диеновых углеводородов.
- •25.Изопреновое звено в природных соединениях. Понятие об изопреноидах. Каучук. Синтетические каучуки.
- •26.Номенклатура, электронное строение, sp-гибридизация и физические свойства алкинов.
- •27.Химические свойства алкинов: каталитическое гидрирование и восстановление натрием в жидком аммиаке, использование в синтезе (z)- и (e)-алкенов.
- •28.Химические свойства алкинов: реакции электрофильного присоединения к тройной связи – галогенирование, гидрогалогенирование, гидратация (реакция Кучерова)
- •29.Кислотность ацетилена и терминальных алкинов. Димеризация, тримеризация ацетилена. Полиацетилен.
- •30.Классификация, номенклатура, структурная изомерия и пространственное строение циклоалканов.
- •32. Классификация и номенклатура аренов. Природа связей в молекуле бензола. Конденсированные ароматические углеводороды: нафталин, антрацен, фенантрен, бензпирен.
- •33. Ароматичность, критерии ароматичности. Правило Хюккеля.
- •35. Влияние заместителей в бензольном кольце на изомерный состав продуктов и скорость реакции. Активирующие и дезактивирующие заместители. Орто-, пара- и мета-ориентанты.
- •36. Реакции радикального замещения и окисления в боковой цепи. Причины устойчивости бензильных радикалов.
- •37. Классификация, номенклатура, изомерия галогенуглеводородов.
- •40. Литий- и магнийорганические соединения и их использование в органическом синтезе.
- •41. Биологическое действие галогенпроизводных, их применение в народном хозяйстве. Хлороформ, иодоформ, перфторуглеводороды, перфторполиэтилен (тефлон). Инсектициды.
- •42. Одноатомные спирты. Номенклатура, изомерия. Электронное строение. Физические свойства спиртов, роль водородной связи.
- •43. Химические свойства спиртов: кислотно-основные свойства. Алкоголяты металлов, их основные и нуклеофильные свойства.
- •44. Реакции нуклеофильного замещения с участием спиртов. Биологически важные реакции нуклеофильного замещения с участием эфиров фосфорных кислот.
- •45. Внутри- и межмолекулярная дегидратация спиртов (образование алкенов и простых эфиров). Окисление первичных и вторичных спиртов.
- •47. Фенолы. Номенклатура и изомерия. Простейшие представители: фенол, крезолы, пирокатехин, резорцин, гидрохинон, флороглюцин, пирогаллол. Электронное строение фенола. Кислотность фенолов.
- •48. Образование простых и сложных эфиров фенолов. Реакции электрофильного замещения в ряду фенолов (галогенирование, сульфирование, нитрование, алкилирование).
- •49. Карбоксилирование фенолятов щелочных металлов (реакция Кольбе). Окисление фенолов.
- •50. Хиноны и их биологическая роль. Фенольные соединения в природе. Витамин е. Флавоноиды.
- •51. Простые эфиры. Номенклатура, классификация. Расщепление кислотами. Образование гидропероксидов, их обнаружение и разложение. Циклические простые эфиры. Тетрагидрофуран. 1,4-Диоксан.
- •52. Оксираны: получение, взаимодействие с водой, аммиаком и аминами, магнийорганическими соединениями. Краун-эфиры: комплексообразование с ионами металлов, применение.
- •53. Кислотность тиолов. Нуклеофильные свойства тиолов, тиолятов и органических сульфидов. Окисление тиолов. Образование дисульфидов и их роль в биохимических процессах.
- •54. Классификация, номенклатура и изомерия аминов. Алифатические и ароматические амины, первичные, вторичные и третичные амины.
- •57. Классификация, номенклатура и изомерия карбонильных соединений.
- •58. Строение карбонильной группы в альдегидах и кетонах и реакции нуклеофильного присоединения (реактивами Гриньяра, циановодородом). Механизм реакций.
- •59. Реакции карбонильных соединений с гетеронуклеофилами:
- •60. Реакции енольных форм карбонильных соединений: a-галогенирование, галоформное расщепление, изотопный обмен водорода. Альдольно-кротоновая конденсация, кислотный и основный катализ.
- •61. Взаимодействие неенолизирующихся альдегидов со щелочами (реакция Канниццаро). Реакции окисления и восстановления карбонильных соединений.
- •62. Монокарбоновые кислоты. Номенклатура. Строение карбоксильной группы и карбоксилат-иона. Кислотность карбоновых кислот.
- •63. Производные карбоновых кислот: сложные эфиры и тиоэфиры (s-эфиры карбоновых кислот), галогенангидриды, ангидриды, амиды, нитрилы, их получение и взаимопревращения.
- •64. Кислотный и щелочной гидролиз сложных эфиров и амидов.
- •65. Реакции ацилирования, этерификации, аминирования и восстановления карбоновых кислот и их производных.
- •66. Жирные кислоты, важнейшие представители (пальмитиновая, стеариновая, олеиновая, линолевая, линоленовая). Жиры, сложные липиды (фосфатидовая кислота и ее производные), мыла.
- •67. Ненасыщенные карбоновые кислоты: акриловая, метакриловая, полимеры на их основе.
- •68. Дикарбоновые кислоты. Основные представители: щавелевая, малоновая, адипиновая, фталевые кислоты. Фумаровая и малеиновая кислоты. Полиэфирные волокна на основе терефталевой и адипиновой кислот.
- •69. Классификация углеводов. Биологическая роль и распространенность углеводов.
- •72. Дисахариды и их типы (восстанавливающие и невосстанавливающие). Сахароза, лактоза, мальтоза, целлобиоза.
- •73. Полисахариды (крахмал, целлюлоза, хитин, гликоген).
- •75. Классификация аминокислот. Основные представители природных a-аминокислот, их стереохимия.
- •76. Свойства аминокислот: амфотерность, изоэлектрическая точка.
- •77. Пептидная связь. Синтез пептидов: активация и защита функциональных групп аминокислот. Белки, их строение и биологическая роль
- •79. Шестичленные гетероциклы с одним гетероатомом: пиридин, хинолин, изохинолин. Ароматичность пиридина и особенности проведения реакций электрофильного замещения. Пиридин как основание.
29.Кислотность ацетилена и терминальных алкинов. Димеризация, тримеризация ацетилена. Полиацетилен.
Ацетилениды — соли ацетилена и его производных, в котором один или два атома водорода замещены атомами элементов, более электроположительных, чем углерод. Углерод в ацетиленидах находится в sp-гибридизации. Ацетилениды, как соли очень слабой кислоты — ацетилена, могут быть получены при взаимодействии ацетилена с щелочными и щёлочноземельными металлами или металлоорганическими соединениями. В процессе реакции происходит замещение водорода в ацетилене металлами. При взаимодействии с магнийорганическими соединениями ацетилен легко образует магнийгалогенопроизводные. Двузамещённые ацетилениды Cu2С2 и Ag2C2 образуются при действии на ацетилен аммиачных растворов соответствующих солей меди(I) и серебра.
Ацетилен в присутствии меди (I) хлорида и аммония хлорида димеризуется с образованием винилацетилена:
Тримеризация ацетилена (присоединение трех молекул друг к другу) протекает под действием температуры, давления и в присутствии активированного угля с образованием бензола (реакция Зелинского).
Полиацетилен — органическое вещество, полимер ацетилена. Известны цис- и транс-формы полиацетилена. При нагревании цис-изомера до 100-150 °C, совершается переход в транс-форму. В зависимость от способа получения полиацетилен может представлять собой черный порошок, сероватый пористый материал, серебристые или золотистые пленки. Не растворим ни в одном из известных органических растворителей.
30.Классификация, номенклатура, структурная изомерия и пространственное строение циклоалканов.
Алициклическими (от алифатические циклические) называют углеводороды, молекулы которых содержат один или несколько циклов неароматического характера.
Алициклические углеводороды классифицируют в зависимости от числа циклов, их величины и способа соединения. По числу циклов, входящих в состав молекулы, алициклические углеводороды подразделяют на моно- и полициклические (би-, трициклические и др.). В ряду моноциклических алициклических соединений выделяют малые циклы (С3 и С4), обычные (С5—С7), средние (С8—С11) и макроциклы (12 и более атомов углерода). Наиболее многочисленная группа в ряду алициклических углеводородов — моноциклические соединения. С целью упрощения написания структурных формул алициклические соединения условно изображают в виде геометрических структур (многоугольников).
В соответствии с правилами IUPAC названия моноциклических алициклических углеводородов образуют от названий алканов с соответствующим количеством атомов углерода, прибавляя префикс цикло-:
Положение заместителей в кольце обозначают с помощью цифровых локантов. Нумерацию углеродных атомов цикла начинают с атома, имеющего заместитель; далее проводят таким образом, чтобы остальные атомы углерода цикла, связанные с заместителями, получили возможно меньшие номера. При наличии в цикле кратной связи нумерацию начинают с атомов углерода, образующих кратную связь.
Циклоалканы (циклопарафины, полиметины, цикланы) — одноядерные насыщенные алициклические углеводороды. Общая формула циклоалканов CnH2n (n>=3). Для циклоалканов характерна структурная, геометрическая и оптическая изомерия.
31.Конформации циклогексана и его производных, пространственная изомерия производных циклогексана. Типы напряжений в молекулах циклоалканов. Химические свойства циклоалканов (циклобутана, циклопентана, циклогексана и циклопропана)
Для молекул циклоалканов, как и для алканов, характерны торсионное напряжение (напряжение Питцера), связанное со взаимодействием химических связей в заслоненной или частично заслоненной конформациях, и напряжение Ван-дер-Ваальса, обусловленное взаимным отталкиванием заместителей при сближении на расстояние, близкое к сумме их вандерваальсовых радиусов. Для некоторых циклоалканов также характерно напряжение, связанное с отклонением валентных углов между углерод-углеродными связями в цикле от нормального (тетраэдрического) значения. Это напряжение получило название «угловое напряжение», или «напряжение Байера» (по имени немецкого химика-органика Адольфа Байера, выдвинувшего в 1885 году теорию напряжения циклов).
В циклогексане шестичленный цикл нс может быть плоским из-за наличия сильного углового и торсионного напряжений. Причиной углового напряжения является отклонение геометрического угла шестиугольника (120°) от идеального валентного угла 5р3-гибридных АО углерода (109,5°), в результате чего энергия молекулы повышается.
Существуют конформации кресла и ванны.
В химическом отношении циклоалканы во многом ведут себя подобно алканам. Для них характерны реакции замещения, протекающие по радикальному механизму (SR):
Реакции присоединения, сопровождающиеся раскрытием цикла. Циклопропан в присутствии катализаторов Ni, Рt и нагревании до 50 °С легко присоединяют водород:
Для циклоалканов и их производных характерны реакции сужения и расширения циклов. Реакции протекают в присутствии катализаторов кислот Льюиса: