
- •4 Пространственная изомерия, конфигурация и конформация.
- •5. Ассимметрический атом углерода как центр хиральности. Стереоизомерия молекул с одним центром хиральности. Оптическая активность.
- •7. Электронное строение атома углерода. Типы гибридизаций атомных орбиталей.
- •8. Сопряженные системы с открытой и замкнутой цепью на примерах бутадиента 1,3 и бензола.
- •9. Ароматичность. Критерии ароматичности.
- •10. Электронные эффекты заместителей: индуктивный и мезомерный. Электродонорные и электроакцепторные заместители и их влияние на реакционную способность соединений.
- •11. Гомо/гетеролитические разрывы ковалентной связы в органических соединениях, образующиеся при этом частицы.
- •12. Радикальные, электрофильные, нуклеофильные реагенты, классификация хим реакций по типу реагента.
- •13. Классификация хим реакций по результату: замещенеие, присоединение, элиминирование, перегруппировка, овр
- •14. Кислоты и основания по бренстеду, их классификация.
- •15. Влияние различных факторов на кислотные и основные свойства веществ. Примеры.
- •16. Спирты и фенолы. Многоатомные спирты.
- •17. Химические свойства спиртов и фенолов.
- •19. Классификации карбоновых кислот по основности, насыщенности, наличию функциональной группы, числу атомов углерода в цепи.
- •20. Химические свойства карбоновых кислот с участием карбоксильной группы: декарбоксилирование, образование солей, амидов, ангидридов, галогенгидридов, сложных эфиров.
- •21. Высшие жирные карбоновые кислоты: классификация, номенклатура, структура, физические свойства.
- •22.Дикарбоновые кислоты: щавелевая, малоновая, янтарная, глутаровая, фумаровая. Их роль в организме. Соли щавелевой кислоты - оксалаты.
- •23. Оксо- гидроксикарбоновые кислоты: пировиноградная и молочная, яблочная и щавелевая, лимонная, ацетоуксусная и β-гидроксимасляная, α-кетоглутаровая, функции в организме.
- •24. Общее представление о липидах, классификация липидов.
- •25. Простые липиды: таг, состав, номенклатура, свойства, гидролиз таг, биологическая роль.
- •27. Соединения стеройдной группы: холестерин, желчные кислоты, представление о химическом строении и биологической роли.
- •28. Углеводы, классификация углеводов, функции углеводов в организме.
- •29. Классификация и химические свойства моносахаридов, (см выше) овр моносахаридов.
- •30. Стереоизомерия моносахаридов d- и l- ряды, открытые и циклические формулы (фишера, колли-толленса, хеуорса), пиранозы и фуранозы, α и β аномеры, циклоцепная таутомерия, явление мутаротации.
- •33. Классификация полисахаридов, функции в организме.
- •34. Дисахариды, структура и свойства основных биологически важных дисахаридов: мальтозы, лактозы, сахарозы, целлобиозы.
- •35. Гомополисахариды: крахмал (амилоза и амилопектин), гликоген, целлюлоза, строение, свойства, биологическая роль.
- •36. Гетерополисахариды, гиалуроновая кислота, хондроитинсульфаты, строение, биологическая роль.
- •37. Азотистые основания пиримидиновые (тимин, урацил, цитозин) и пуриновые (аденин, гуанин), строение, лактим-лактамная таутомерия.
- •38. Нуклеозиды, строение, номенклатура, гидролиз, характер связи нуклеинового основания с углеводным остатком.
- •39. Нуклеотиды, строение, номенклатура, гидролиз, характер связей между компонентами нуклеотида.
- •40. Свободные нуклеотиды: цамф и цгмф, атф, адф, фад, над, строение, функции в организме.
- •41. Первичная структура нуклеиновых кислот, нуклеотидный состав днк/рнк.
- •42. Понятие о вторичной структуре днк. Комплементарность азотистых оснований, водородные связи в комплементарных парах.
- •43. Аминокислоты, номенклатура, классификация по полярности радикала и пищевой ценности, примеры.
- •44. Стереоизомерия аминокислот.
- •45. Кислотно-основные свойства аминокислот. Биполярные ионы, изоэлектрическая точка.
- •46. Химические свойства аминокислот, биологически важные свойства аминокислот.
- •47. Физиологически активные пептиды, примеры.
- •48. Уровни организации белковой молекулы: первичная структура белка, электронное строение пептидной связи и ее характеристика, зависимость свойств белка от первичной структуры.
- •49. Вторичная структура белков, α-спираль, β-складчатый слой, беспорядочный клубок, связи, стабилизирующие вторичную структуру белка.
- •50. Третичная и четвертичная структуры белков, связи, их стабилизирующие, особенности строения и функционирования олигомерных белков на примере гемоглобина.
- •51. Классификации белков.
- •52. Физико-химические свойства белков, растворимость, ионизация, гидратация, денатурация, ренатурация.
- •56. Классификация сложных белков.
- •57. Гемопротеины, сравнительная характеристика структур и функций миоглобина и гемоглобина.
- •53. Кооперативное связывание кислорода гемоглобином, эффект бора, влияние 2,3-бфг на сродство гемоглобина к кислороду. Эффективность транспорта кислорода регулируется Изменение рН среды
- •Механизм эффекта Бора Кооперативное взаимодействие
21. Высшие жирные карбоновые кислоты: классификация, номенклатура, структура, физические свойства.
ВЖК — алифатические одноосновные карбоновые кислоты с открытой цепью, содержащиеся в этерифицированной форме в жирах, маслах и восках растительного и животного происхождения. Жирные кислоты, как правило, содержат неразветвленную цепь из четного числа атомов углерода (С4-24, включая карбоксильный углерод) и могут быть как насыщенными, так и ненасыщенными.
Классификация:
1.Насыщенные: Жирная кислота считается насыщенной, если все свободные углеродные цепи связаны атомом водорода. Насыщенные жиры содержатся, в основном, в животных жирах и тропических маслах, и организм также производит их из углеводов.
стеариновая (C17H35COOH)
пальмитиновая (C15H31COOH)
3.Ненасыщенные: полиненасыщенные жирные кислоты имеют две или более двойных связей, поэтому им не хватает уже четырех атомов водорода и выше. Все жиры и масла, как растительного так и животного происхождения, представлены комбинацией насыщенных жирных кислот, мононенасыщенных жирных кислот и полиненасыщенных линолевой и линоленовой кислот.
пальмитолеиновая (C15H29COOH, 1 двойная связь)
олеиновая (C17H33COOH, 1 двойная связь)
линолевая (C17H31COOH, 2 двойные связи)
линоленовая (C17H29COOH, 3 двойные связи)
арахидоновая (C19H31COOH, 4 двойные связи,
К незаменимым жирным кислотам относятся всего две жирных кислоты: линолевая и линоленовая, и из линолевой синтезируется арахидоновая – они образуют витамин F. Остальные относятся к заменимым: пальмитолеиновая (C15H29COOH, 1 двойная связь), олеиновая (C17H33COOH, 1 двойная связь), стеариновая (C17H35COOH), пальмитиновая (C15H31COOH).
Для названия Ненасыщенных жирных кислот наиболее удобна ω-номенклатура, в соответствии с которой структура любой ненасыщенной жирной кислоты может быть выражена тремя цифрами : длиной цепи (количеством углеродных атомов), количеством двойных связей и количеством углеродных атомов между двойной связью и метильной группой (ω-углеродом). Наличие двойной связи может быть также обозначено цифрой, указывающей начало двойной связи, считая с карбоксильного конца молекулы:
Олеиновая кислота (18:1 ω9),или Цис - 9 - октадеценовая кислота.
Линолевая кислота (18:2 ω6), или Цис-9-Цис-12-октадекадиеновая кислота.
Линоленовая кислота (18:3 ω3), или Цис-9, Цис-12, Цис-15-октадекатриеновая кислота.
Арахидоновая кислота (20:4 ω6), или (эйкозатетраен-5,8,11,14-овая кислота), Цис-5, Цис-8, Цис-11, Цис-14- эйкозатетраеновая кислота.
Химические свойства:
Химические свойства ВЖК: образование солей, реакция этерификации с образованием тиоэфиров (ацилКоА).
Образование солей:
С17Н35СООН + NaOH → С17Н35СООNа + Н2О
Реакция этерификации ВЖК сопровождается активацией ВЖК и получением АцилКоА. Реакция происходит на наружной поверхности мембраны митохондрий при участии АТФ, коэнзима A (HS-KoA) и ионов Mg2+. Катализируется ферментом ацил-КоА-синтетазой:
22.Дикарбоновые кислоты: щавелевая, малоновая, янтарная, глутаровая, фумаровая. Их роль в организме. Соли щавелевой кислоты - оксалаты.
Щавелевая кислота НООС—СООН — простейшая двухосновная кислота. Ее соли называют оксалатами.
Na2C2O4
--tNa2CO3+CO,
Малоновая кислота НООС-СН2-СООН
,
Янтарная кислота НООС(СН2)2СООН
Глутаровая кислота НООС(СН2)2СООН
Ненасыщенные дикарбоновые кислоты: фумаровая, малеиновая их пространственное строение. Превращение янтарной кислоты в фумаровую кислоту как пример биологической реакции дегидрирования.
Малеиновая кислота
,
Фумаровая кислота
Превращение янтарной кислоты в фумаровую кислоту:
Насыщенные дикарбоновые кислоты – это карбоновые кислоты, содержащие 2 карбоксильные группы –СООН, с общей формулой НООС-R-СООН, где R-любой двухвалентный органический радикал. Ненасыщенные карбоновые кислоты содержат в углеводо-родной цепи одну или несколько двойных или тройных связей.
Система дикарбоновых аминокислот, к которой относят также соответствующие α-кетокислоты, теснейшим образом связана не только с азотистым метаболизмом в целом, но и с обменом липидов и углеводов. Ранее отмечалась особая роль дикарбоновых аминокислот и ферментов, катализирующих их превращения, в перераспределении азота в организме, дезаминировании и синтезе природных аминокислот (реакции трансде-заминирования и трансреаминирования), в образовании конечных продуктов белкового обмена – синтезе мочевины. Аспарагиновая кислота принимает непосредственное участие в орни-тиновом цикле мочевинообразования, в реакциях трансаминирования и биосинтезе углеводов (гликогенная аминокислота), карнозина и ансерина, пуриновых и пиримидиновых нуклеотидов (см. главу 14), а также в синтезе N-ацетиласпарагиновой кислоты в ткани мозга. Роль последней, содержащейся в довольно высоких концентрациях в ткани мозга млекопитающих, пока не выяснена. Глутаминовая кислота, являющаяся гликогенной и заменимой аминокислотой для человека и животных, также включается в синтез ряда специфических метаболитов, в частности глутатиона и глутамина. Помимо участия в транспорте аммиака и регуляции кислотно-щелочного равновесия, глутамин – это незаменимый источник азота в ряде синтезов, в частности в биосинтезе пуриновых и пиримидиновых нуклеотидов, амино-сахаров, в обезвреживании фенилуксусной кислоты (синтез фенилацетил-глутамина) у человека и человекообразных обезьян, а также в синтезе витамина фолиевой кислоты (птероилглутаминовая кислота). Глутамин и аспарагин оказались, кроме того, эссенциальными факторами для роста некоторых нормальных и опухолевых клеток в культуре ткани; они не могут быть заменены ни друг другом, ни соответствующими дикарбоновыми аминокислотами. Это свидетельствует о том, что в условиях выращивания клеток в культуре ткани некоторые клетки теряют способность синтезировать эти амиды синтетазным или трансаминазным путем.