
- •4 Пространственная изомерия, конфигурация и конформация.
- •5. Ассимметрический атом углерода как центр хиральности. Стереоизомерия молекул с одним центром хиральности. Оптическая активность.
- •7. Электронное строение атома углерода. Типы гибридизаций атомных орбиталей.
- •8. Сопряженные системы с открытой и замкнутой цепью на примерах бутадиента 1,3 и бензола.
- •9. Ароматичность. Критерии ароматичности.
- •10. Электронные эффекты заместителей: индуктивный и мезомерный. Электродонорные и электроакцепторные заместители и их влияние на реакционную способность соединений.
- •11. Гомо/гетеролитические разрывы ковалентной связы в органических соединениях, образующиеся при этом частицы.
- •12. Радикальные, электрофильные, нуклеофильные реагенты, классификация хим реакций по типу реагента.
- •13. Классификация хим реакций по результату: замещенеие, присоединение, элиминирование, перегруппировка, овр
- •14. Кислоты и основания по бренстеду, их классификация.
- •15. Влияние различных факторов на кислотные и основные свойства веществ. Примеры.
- •16. Спирты и фенолы. Многоатомные спирты.
- •17. Химические свойства спиртов и фенолов.
- •19. Классификации карбоновых кислот по основности, насыщенности, наличию функциональной группы, числу атомов углерода в цепи.
- •20. Химические свойства карбоновых кислот с участием карбоксильной группы: декарбоксилирование, образование солей, амидов, ангидридов, галогенгидридов, сложных эфиров.
- •21. Высшие жирные карбоновые кислоты: классификация, номенклатура, структура, физические свойства.
- •22.Дикарбоновые кислоты: щавелевая, малоновая, янтарная, глутаровая, фумаровая. Их роль в организме. Соли щавелевой кислоты - оксалаты.
- •23. Оксо- гидроксикарбоновые кислоты: пировиноградная и молочная, яблочная и щавелевая, лимонная, ацетоуксусная и β-гидроксимасляная, α-кетоглутаровая, функции в организме.
- •24. Общее представление о липидах, классификация липидов.
- •25. Простые липиды: таг, состав, номенклатура, свойства, гидролиз таг, биологическая роль.
- •27. Соединения стеройдной группы: холестерин, желчные кислоты, представление о химическом строении и биологической роли.
- •28. Углеводы, классификация углеводов, функции углеводов в организме.
- •29. Классификация и химические свойства моносахаридов, (см выше) овр моносахаридов.
- •30. Стереоизомерия моносахаридов d- и l- ряды, открытые и циклические формулы (фишера, колли-толленса, хеуорса), пиранозы и фуранозы, α и β аномеры, циклоцепная таутомерия, явление мутаротации.
- •33. Классификация полисахаридов, функции в организме.
- •34. Дисахариды, структура и свойства основных биологически важных дисахаридов: мальтозы, лактозы, сахарозы, целлобиозы.
- •35. Гомополисахариды: крахмал (амилоза и амилопектин), гликоген, целлюлоза, строение, свойства, биологическая роль.
- •36. Гетерополисахариды, гиалуроновая кислота, хондроитинсульфаты, строение, биологическая роль.
- •37. Азотистые основания пиримидиновые (тимин, урацил, цитозин) и пуриновые (аденин, гуанин), строение, лактим-лактамная таутомерия.
- •38. Нуклеозиды, строение, номенклатура, гидролиз, характер связи нуклеинового основания с углеводным остатком.
- •39. Нуклеотиды, строение, номенклатура, гидролиз, характер связей между компонентами нуклеотида.
- •40. Свободные нуклеотиды: цамф и цгмф, атф, адф, фад, над, строение, функции в организме.
- •41. Первичная структура нуклеиновых кислот, нуклеотидный состав днк/рнк.
- •42. Понятие о вторичной структуре днк. Комплементарность азотистых оснований, водородные связи в комплементарных парах.
- •43. Аминокислоты, номенклатура, классификация по полярности радикала и пищевой ценности, примеры.
- •44. Стереоизомерия аминокислот.
- •45. Кислотно-основные свойства аминокислот. Биполярные ионы, изоэлектрическая точка.
- •46. Химические свойства аминокислот, биологически важные свойства аминокислот.
- •47. Физиологически активные пептиды, примеры.
- •48. Уровни организации белковой молекулы: первичная структура белка, электронное строение пептидной связи и ее характеристика, зависимость свойств белка от первичной структуры.
- •49. Вторичная структура белков, α-спираль, β-складчатый слой, беспорядочный клубок, связи, стабилизирующие вторичную структуру белка.
- •50. Третичная и четвертичная структуры белков, связи, их стабилизирующие, особенности строения и функционирования олигомерных белков на примере гемоглобина.
- •51. Классификации белков.
- •52. Физико-химические свойства белков, растворимость, ионизация, гидратация, денатурация, ренатурация.
- •56. Классификация сложных белков.
- •57. Гемопротеины, сравнительная характеристика структур и функций миоглобина и гемоглобина.
- •53. Кооперативное связывание кислорода гемоглобином, эффект бора, влияние 2,3-бфг на сродство гемоглобина к кислороду. Эффективность транспорта кислорода регулируется Изменение рН среды
- •Механизм эффекта Бора Кооперативное взаимодействие
51. Классификации белков.
Так, белки можно классифицировать:
по форме молекул (глобулярные или фибриллярные);
по молекулярной массе (низкомолекулярные, высокомолекулярные и др.);
по химическому строению (наличие или отсутствие небелковой части);
по выполняемым функциям (транспортные, защитные, структурные белки и др.);
по локализации в клетке (ядерные, цитоплазматические, лизосомальные и др.);
по локализации в организме (белки крови, печени, сердца и др.);
по возможности адаптивно регулировать количество данных белков: белки, синтезирующиеся с постоянной скоростью (конститутивные), и белки, синтез которых может усиливаться при воздействии факторов среды (индуцибельные);
по продолжительности жизни в клетке (от очень быстро обновляющихся белков, с Т1/2 менее 1 ч, до очень медленно обновляющихся белков, Т1/2 которых исчисляют неделями и месяцами);
по схожим участкам первичной структуры и родственным функциям (семейства белков).
Одной из самых старых и распространенных классификаций белков является классификация по форме молекулы.
Она делит белки на 2 группы: глобулярные и фибриллярные. К глобулярным относят белки, соотношение продольной и поперечной осей которых не превышает 1:10, а чаще составляет 1:3 или 1:4, т.е. белковая молекула имеет форму эллипса. Большинство индивидуальных белков человека относят к глобулярным белкам. Они имеют компактную структуру и многие из них, за счёт удаления гидрофобных радикалов внутрь молекулы, хорошо растворимы в воде.
Фибриллярные белки имеют вытянутую, нитевидную структуру, в которой соотношение продольной и поперечной осей составляет более 1:10. К фибриллярным белкам относят коллагены, эластин, кератин, выполняющие в организме человека структурную функцию, а также миозин, участвующий в мышечном сокращении, и фибрин - белок свёртывающей системы крови.
По химическому строению белки делят на простые и сложные. Белки, содержащие в своём составе только полипептидные цепи, состоящие из аминокислотных остатков, называют простые белки. Примером простых белков могут служить основные белки хроматина - гистоны; в их составе содержится много аминокислотных остатков лизина и аргинина, радикалы которых имеют положительный заряд . Однако очень многие белки, кроме полипептидных цепей, содержат в своём составе небелковую часть, присоединённую к белку слабыми или ковалентными связями. Небелковая часть может быть представлена ионами металлов, какими-либо органическими молекулами с низкой или высокой молекулярной массой. Такие белки называют сложные белки. Прочно связанная с белком небелковая часть носит название простетической группы. Простетическая группа может быть представлена веществами разной природы. Например, белки, соединённые с гемом, носят название гемопротеины.
Белки, соединённые с остатком фосфорной кислоты, называют фосфопротеинами. Фосфорные остатки присоединяются сложноэфирной связью к гидроксильным группам серина, треонина или тирозина при участии ферментов, называемых протеинкиназами.
В состав белков часто входят углеводные остатки, придающие белкам дополнительную специфичность и часто уменьшающие скорость их ферментативного протеолиза. Такие белки носят название гликопротеинов. Многие белки крови, а также рецепторные белки клеточной поверхности относят к гликопротеинам.
Белки, функционирующие в комплексе с липидами, называют липопротеинами, а в комплексе с металлами - металлопротеинами.
Сложный белок, состоящий из белковой части (апопротеин) и небелковой части (простетическая группа), называют "холопротеин".
В ходе эволюции в пределах одного биологического вида замены аминокислотных остатков могут приводить к возникновению разных белков, выполняющих родственные функции и имеющих гомологичные последовательности аминокислот. Такие белки, имеющие гомологичные участки полипептидной цепи, сходную конформацию и родственные функции, выделяют в семейства белков
К семейству родственных белков относят сериновые протеазы. Это семейство ферментов, которые используют уникально активированный остаток серина, расположенный в активном центре, для связывания и каталитического гидролиза пептидных связей в белковых субстратах. Мишени для сериновых протеаз - специфические пептидные связи в белках (часто в других сериновых протеазах). Д ля всех белков этого семейства характерно наличие в активном центре остатков Сер195, Гис57, Асп102 (эту нумерацию используют независимо от их точного расположения в первичной структуре определённых сериновых протеаз). Выявлена также высокая схожесть их пространственных структур, несмотря на то, что только в 40% положений они содержат идентичные аминокислоты. Каталитический участок сериновых протеаз расположен в расщелине между двумя доменами. Некоторые аминокислотные замены привели к изменению субстратной специфичности этих белков и к возникновению функционального многообразия внутри этого семейства. Так, пищеварительные сериновые протеазы участвуют в переваривании (гидролитическом расщеплении пептидных связей) денатурированных пищевых белков. К ним относят трипсин, химотрипсин, эластазу, но каждый из этих ферментов предпочитает разрывать пептидные связи, образованные определёнными аминокислотами. Ещё большей субстратной специфичностью обладают сериновые протеазы, участвующие в тщательно контролируемых физиологических процессах, таких как активация каскада белков свёртывания крови, фибринолиза, активация белков системы комплемента, образования белковых гормонов.
Иммуноглобулины, или антитела, - специфические белки, вырабатываемые В-лимфоцитами в ответ на попадание в организм чужеродных структур, называемых антигенами. В организме человека вырабатывается около 107 клонов В-лимфоцитов, каждый из которых специализирован на выработке одного из 107 видов иммуноглобулинов. Все иммуноглобулины характеризуются общим планом строения: состоят из четырёх полипептидных цепей: двух идентичных лёгких (L - от англ,light), содержащих около 220 аминокислотных остатков, и двух тяжёлых (Н - от англ. heavy), состоящих из 440 аминокислот каждая. Все 4 цепи соединены друг с другом множеством нековалентных и четырьмя дисульфидными связями. Лёгкие цепи состоят из 2 доменов: вариабельного (VL), находящегося в N-концевой области полипептидной цепи, и константного (CL), расположенного на С-конце. Каждый из доменов состоит из 2 слоев с β-складчатой структурой, где участки полипептидной цепи лежат антипараллельно. β-Слои связаны ковалентно дисульфидной связью примерно в середине домена. Тяжёлые цепи имеют 4 домена: один вариабельный (VH), находящийся на N-конце, и три константных (СН1, СН2, СH3). Домены тяжёлых цепей IgG имеют гомологичное строение с доменами лёгких цепей. Между двумя константными доменами тяжёлых цепей СH1, и СН2 есть участок, содержащий большое количество остатков пролина, которые препятствуют формированию вторичной структуры и взаимодействию соседних Н-цепей на этом отрезке. Этот участок называют "шарнирной областью"; он придаёт молекуле гибкость. Между вариабельными доменами тяжёлых и лёгких цепей находятся два идентичных участка, связывающих два одинаковых специфических антигена; поэтому такие антитела часто называют "биваленты". Основные функции антител - обнаружение и связывание чужеродных антигенов, находящихся в организме вне его клеток (в крови, лимфе, межклеточной жидкости, в слизистых секретах). Это происходит с помощью специфических антигенсвязывающих участков разных клонов иммуноглобулинов. Кроме, того, благодаря связыванию антигена с антителом облегчается процесс дальнейшего разрушения чужеродных веществ. Специфичность пути разрушения комплекса антиген-антитело зависит от класса антител, которых существует 5 типов: IgA, IgD, IgE, IgG, IgM.