
- •3.1. Постановка задачи 23
- •5.1. Постановка задачи 41
- •6.1. Постановка задачи 48
- •7.1. Постановка задачи 59
- •9.1. Постановка задачи 81
- •Введение
- •Тема 1. Элементы теории погрешностей
- •1.1. Точные и приближенные числа
- •1.2. Абсолютная и относительная погрешность
- •Тема 2. Методы решения нелинейных уравнений
- •2.1. Постановка задачи
- •Отделение корней (локализация корней);
- •Уточнение корней.
- •2.2. Отделение корней
- •2.2.1. Графическое отделение корней
- •2.2.2. Аналитическое отделение корней
- •2.3. Уточнение корней
- •2.3.1. Метод половинного деления
- •2.3.2. Метод итерации
- •2.3.3. Метод Ньютона (метод касательных)
- •2.3.4. Метод хорд
- •Тема 3. Интерполяция функций
- •3.1. Постановка задачи
- •3.2. Интерполяционная формула Лагранжа
- •3.3. Интерполяционные формулы Ньютона
- •3.3.1. Конечные разности
- •3.3.2. Первая интерполяционная формула Ньютона
- •3.3.3. Вторая интерполяционная формула Ньютона
- •3.4. Сплайн – интерполяция
- •Тема 4. Аппроксимация функций
- •4.1. Постановка задачи аппроксимации
- •4.2. Метод наименьших квадратов
- •Тема 5. Численное интегрирование
- •5.1. Постановка задачи
- •5.2. Методы прямоугольников
- •5.3. Формула трапеций
- •5.4. Формула Симпсона
- •5.5. Оценка погрешности численного интегрирования
- •Тема 6. Методы решения обыкновенных дифференциальных уравнений
- •6.1. Постановка задачи
- •6.2. Метод Эйлера
- •6.3. Методы Рунге-Кутты
- •6.4. Решение оду n-го порядка
- •Тема 7. Одномерная оптимизация
- •7.1. Постановка задачи
- •7.2. Метод прямого перебора с переменным шагом
- •7.3. Метод дихотомии
- •7.4. Метод золотого сечения
- •7.5. Метод средней точки
- •Тема 8. Многомерная оптимизация
- •8.1. Постановка задачи и основные определения
- •8.2. Методы спуска
- •8.3. Метод градиентного спуска с дроблением шага
- •8.4. Метод наискорейшего спуска
- •8.5. Метод покоординатного спуска
- •Тема 9. Методы решения систем линейных уравнений
- •9.1. Постановка задачи
- •9.2.Метод Гаусса
- •9.3. Метод итераций
- •Список литературы
2.3.4. Метод хорд
Геометрическая интерпретация метода хорд состоит в следующем (рис.2.3-6).
Рис.2.3-6
Проведем отрезок прямой через точки A и B. Очередное приближение x1 является абсциссой точки пересечения хорды с осью 0х. Построим уравнение прямой для этого случая:
Положим y=0 и найдем значение х=х1 (очередное приближение):
Повторим процесс вычислений для получения очередного приближения к корню - х2:
В
нашем случае (рис.2.3-7)
и
расчетная формула метода хорд будет
иметь вид
(2.3-13)
Эта формула справедлива, когда за неподвижную точку принимается точка b, а в качестве начального приближения выступает точка a.
Рассмотрим
другой случай (рис. 2.3-7), когда
.
Рис.2.3-7
Уравнение прямой для этого случая имеет вид
Очередное приближение х1 при y = 0
Тогда рекуррентная формула метода хорд для этого случая имеет вид
(2.3-14)
За неподвижную точку в методе хорд выбирают тот конец отрезка [a;b], для которого выполняется условие f (x)∙f¢¢ (x)>0.
Таким образом, если за неподвижную точку приняли точку а, то в качестве начального приближения выступает х0 = b, и наоборот.
Достаточные условия, которые обеспечивают вычисление корня уравнения f(x)=0 по формуле хорд, будут теми же, что и для метода касательных (метод Ньютона), только вместо начального приближения выбирается неподвижная точка. Метод хорд является модификацией метода Ньютона. Разница состоит в том, что в качестве очередного приближения в методе Ньютона выступает точка пересечения касательной с осью 0Х,а в методе хорд – точка пересечения хорды с осью 0Х – приближения сходятся к корню с разных сторон.
Оценка погрешности метода хорд определяется выражением
(2.3-15)
где
m1
и M1
– соответственно наименьшее и наибольшее
значения
при
.
Условие окончания процесса итераций по методу хорд
(2.3-16)
В случае, если M1<2m1, то для оценки погрешности метода может быть использована формула
| xn-xn-1|£e.
Пример 2.3-4. Уточнить корень уравнения ex – 3x = 0, отделенный на отрезке [0;1] с точностью 10-4.
Проверим условие сходимости:
Условие сходимости выполняется.
Следовательно, за неподвижную точку следует выбрать а=0, а в качестве начального приближения принять х0=1, поскольку f(0)=1>0 и f(0)*f"(0)>0.
Результаты расчета, полученные с использованием формулы 2.3-15, представлены в таблице 2.3-4.
Таблица 2.3-4
i |
x |
f(x) |
1 |
0.7812 |
-0.1569 |
2 |
0.6733 |
-0.0591 |
3 |
0.6356 |
-0.0182 |
… |
……….. |
……….. |
8 |
0.6191 |
-4.147∙10-5 |
Требуемая точность достигается на 8-й итерации. Следовательно, за приближенное значение корня можно принять х = 0.6191.