
- •«Математические методы финансового анализа»
- •Раздел 1 Основные понятия и методы финансовых вычислений
- •Тема 1. Процентные ставки.
- •3.Три метода начисления простой процентной ставки.
- •7.Непрерывное начисление процентов. Сила роста. Вычисление наращенной суммы при непрерывном начислении процентов. Связь дискретных ставок наращения с силой роста.
- •Тема 2. Учётные ставки.
- •Тема 3. Потоки платежей.
- •12. Определение потока платежей. Классификация потоков платежей. Параметры ренты.
- •13.Расчет наращенной суммы и современной стоимости потока платежей.
- •15.Расчёт современной стоимости постоянной годовой ренты постнумерандо. Коэффициент приведения (аннуитета) ренты.
- •16.Определение параметров постоянной годовой ренты постнумерандо. Определение члена ренты, срока рента, размера процентной ставки.
- •17.Расчет наращенной суммы и современной стоимости ренты пренумерандо и ренты с выплатами в середине периода.
- •Раздел 2. Практические приложения методов финансового анализа
- •Тема 4. Оценка экономической эффективности инвестиционного проекта.
- •Тема 5. Оценка финансовых активов (инструментов).
- •24.Базовая модель оценки финансовых активов.
- •27.Определение акции. Классификация акций. Параметры акции. Оценка обыкновенных акций. Модель нулевого роста.
- •28.Оценка обыкновенных акций с постоянным темпом прироста дивидендов. Модель постоянного роста. Оценка привилегированных акций.
- •Тема 6. Анализ кредитных операций (сделок).
- •30.Баланс долгосрочной кредитной сделки. Контур кредитной операции. Вывод балансового уравнения. Определение величины постоянного периодического платежа заемщика.
«Математические методы финансового анализа»
Раздел 1 Основные понятия и методы финансовых вычислений
Тема 1. Процентные ставки.
1.Принцип неравноценности денег во времени. Дать определение понятиям: проценты, наращенная сумма ссуды, процентная ставка наращения. Понятие финансовой операции. Доходность финансовой операции. Рубль, заработанный сегодня, стоит дороже рубля, заработанного завтра без учета инфляции. Процент-абсолютная величина дохода от предоставления денег в долг в любой его форме.I-процент, S- наращенная сумма, P-первоначальная сумма. i=I*100% /P(процентная ставка-явл. измерителем степени доходности любой финн.операции, тогда процентная ставка наз. доходностью.
2.Простая процентная ставка наращения. Вычисление процентов, наращенной суммы. Множитель наращения. Простая процентная ставка-ставка, при кот. база начисления всегда остается постоянной. I=Pni S=P(1+ni) n=t/K (где n-срок, t-число месяцев, K-временная база=360)
3.Три метода начисления простой процентной ставки.
Метод точных %- К=365
Метод обыкновенных %- К=360
Метод обыкновенных % с приблизительным числом дней(30)- К=360
4.Сложная процентная ставка наращения. Вычисление наращенной суммы. Множитель наращения.Сложная %ставка-ставка наращения, при которой база начисления явл переменной. 1год S1=P(1+i) 2год S2=P(1+i)(1+i) 3год S3=P(1+i)(1+i)(1+i) из этого следует S=P(1+i)n Сложные %ставка применяется для долгосрочных ссуд сроком более 1 года.
5.Номинальная процентная ставка наращения. Вычисление наращенной суммы при начислении процентов m раз за год. Номинальная %ставка наращения- ставка не за период,а за год(j). m-кол-во начислений процентов за год i=j/m S=P(1+j/m)mn
6.Определение эффективной ставки. Расчёт эффективной ставки. Эффективная ставка - годовая ставка сложных %,кот дает тот же процент, что и m разовом начислении. Эффективная ставка измеряет реальный относительный доход, кот получает в целом за год от начисления процентов. P(1+i)n = P(1+j/m)mn i=(1+j/m)n-1(эффективная ставка наращения). Замена в договоре номинал ставки j при m-разовом начислении на эффективную ставку i не изменит финансовых обязательств сторон,т.е. обе ставки эквивалентны в финансовом отношении. S(1-d)n=S(1-f/m)mn
d=1-(1-f/m)m
7.Непрерывное начисление процентов. Сила роста. Вычисление наращенной суммы при непрерывном начислении процентов. Связь дискретных ставок наращения с силой роста.
Непрерывное начисление %- начисление % , при количестве начислений m∞. S=lim[P(1+j/m)mn]=Peᵟn, где ᵟ - сила роста-%ставка при непрерывном начислении процента.
ᵟ=ln(1+i)=mln(1+j/m) S=P(1+j/m)mn j=m(eᵟ/m -1) ᵟ=m*ln(1+j/m)
8.Математическое дисконтирование. Вычисление современной стоимости при использовании простых, сложных, номинальных процентов и силы роста. Дисконтные множители (коэффициенты дисконтирования). Понятие дисконта. Дисконтирование- обратный процесс наращения, закл в определении первоначальной суммы по известной наращенной сумме, сроку финансовой операции и процентной ставке. Сколько нам сейчас необходимо инвестировать (положить в банк),чтобы через n лет получить заданную сумму при заданной %ставке.P=S/(1+i)n; Pt=St/(1+r)t
r-ставка дисконтирования-min-ая норма доходности, приемлемая для инвестора.Опр-ся из стоимости альтернативных вложений.