
- •Функциональная организация ферментов.
- •Регуляция биосинтеза ферментов.
- •Изоферменты.
- •Мультиферментные системы.
- •Зависимость скорости ферментативной реакции от количества ферментов.
- •Зависимость скорости ферментативной реакции от температуры среды.
- •Зависимость скорости ферментативной реакции от рН среды.
- •Зависимость скорости ферментативной реакции от количества субстрата.
- •Способы регуляции активности ферментов.
- •Регуляция количества ферментов.
- •Влияние активаторов и ингибиторов на активность ферментов, активаторы ферментов, ингибиторы ферментов.
- •Регуляция каталитической эффективности ферментов.
- •Активность ферментов, методы измерения активности.
- •Воспроизводимые суммарные параметры реакций; Удельная активность, Степень активности фермента.
- •Очистка фермента, методы определения ферментных белков.
- •Пути исследования ферментов.
- •Методы выделения ферментов.
- •Методы очистки ферментов, физические методы, биологические методы. Выдавливание клеток.
- •Получение белков в чистом виде.
- •Высаливание. Методы дезинтеграции клеток.
- •Ферменты гликозилирования.
- •Медицинская энзимология: энзимопатология, энзимодиагностика и энзимотерапия, наследственные энзимопатии, клеточные ферменты, Секреторные ферменты, Экскреторные ферменты.
- •Применение ферментов в промышленности и сельском хозяйстве. Иммобилизованные ферменты.
- •Применение ферментных препаратов в молочной промышленности.
- •Применение ферментных препаратов в хлебопечении.
- •Ферменты как аналитические реагенты.
Зависимость скорости ферментативной реакции от температуры среды.
Повышение температуры до определённых пределов оказывает
влияние на скорость ферментативной реакции, подобно влиянию
температуры на любую химическую реакцию. С повышением температуры ускоряется движение молекул, что приводит к повышению вероятности взаимодействия реагирующих веществ. Кроме того, температура может повышать энергию реагирующих молекул, что также приводит к ускорению реакции. Однако скорость химической реакции, катализируемая ферментами, имеет свой температурный оптимум, превышение которого сопровождается понижением ферментативной активности, возникающим из-за термической денатурации белковой молекулы
Для большинства ферментов человека оптимальна температура 37-38 °С. Однако в природе существуют и термостабильные ферменты. Например, Taq – полимераза, выделенная из микроорганизмов, живущих в горячих источниках, не инактивируется при повышении температуры до 95 °С. Этот фермент используют в научно- практической медицине для молекулярной диагностики заболеваний с использованием метода полимеразной цепной реакции (ПЦР).
При низких температурах (приблизительно до 40–50оС) повышение температуры на каждые 10оС в соответствии с правилом Вант-Гоффа сопровождается увеличением скорости химической реакции в 2-4 раза. При высоких температурах более 55-60 оС активность фермента резко снижается из-за его тепловой денатурации, и, как следствие этого, наблюдается резкое снижение скорости ферментативной реакции. Максимальная активность ферментов наблюдается обычно в пределах 40-60 оС. Температура, при которой активность фермента максимальна, называется температурным оптимумом. Температурный оптимум ферментов термофильных микроорганизмов находится в области более высоких температур
Зависимость скорости ферментативной реакции от рН среды.
Влияние среды (рН)
Активность ферментов зависит от pH раствора, в котором протекает ферментативная реакция. Для каждого фермента существует значение pH, при котором наблюдается его максимальная активность. Отклонение от оптимального значения pH приводит к понижению ферментативной активности.
Влияние pH на активность ферментов связано с ионизацией функциональных групп аминокислотных остатков данного белка, обеспечивающих оптимальную конформацию активного центра фермента. При изменении pH от оптимальных значений происходит изменение ионизации функциональных групп молекулы белка. Например, при закислении среды происходит протонирование свободных аминогрупп (NH3+), а при защелачивании происходит отщепление протона от карбоксильных групп (СОО ). Это приводит к изменению конформации молекулы фермента и конформации активного центра; следовательно, нарушается присоединение субстрата, кофакторов и коферментов к активному центру. Кроме того, pH среды может влиять на степень ионизации или пространственную организацию субстрата, что также влияет на сродство субстрата к активному центру. При значительном отклонении от оптимального значения pH может происходить денатурация белковой молекулы с полной потерей ферментативной активности (рисунок 6.3).
Ферменты, работающие в кислых условиях среды (например, пепсин в желудке или лизосомальные ферменты), эволюционно приобретают конформацию, обеспечивающую работу фермента при кислых значениях pH. Однако большая часть ферментов организма человека имеет оптимум pH, близкий к нейтральному, совпадающий с физиологическим значением pH
Характер зависимости ферментативной реакции от рН определяется тем, что этот показатель оказывает влияние на:
a) ионизацию аминокислотных остатков, участвующих в катализе,
b) ионизацию субстрата,
c) конформацию фермента и его активного центра.