
- •Network Intrusion Detection, Third Edition
- •Table of Contents
- •Copyright
- •About the Authors
- •About the Technical Reviewers
- •Acknowledgments
- •Tell Us What You Think
- •Introduction
- •Chapter 1. IP Concepts
- •Layers
- •Data Flow
- •Packaging (Beyond Paper or Plastic)
- •Bits, Bytes, and Packets
- •Encapsulation Revisited
- •Interpretation of the Layers
- •Addresses
- •Physical Addresses, Media Access Controller Addresses
- •Logical Addresses, IP Addresses
- •Subnet Masks
- •Service Ports
- •IP Protocols
- •Domain Name System
- •Routing: How You Get There from Here
- •Summary
- •Chapter 2. Introduction to TCPdump and TCP
- •TCPdump
- •TCPdump Behavior
- •Filters
- •Binary Collection
- •TCPdump Output
- •Absolute and Relative Sequence Numbers
- •Dumping in Hexadecimal
- •Introduction to TCP
- •Establishing a TCP Connection
- •Server and Client Ports
- •Connection Termination
- •The Graceful Method
- •The Abrupt Method
- •Data Transfer
- •What's the Bottom Line?
- •TCP Gone Awry
- •An ACK Scan
- •A Telnet Scan?
- •TCP Session Hijacking
- •Summary
- •Chapter 3. Fragmentation
- •Theory of Fragmentation
- •All Aboard the Fragment Train
- •The Fragment Dining Car
- •The Fragment Caboose
- •Viewing Fragmentation Using TCPdump
- •Fragmentation and Packet-Filtering Devices
- •The Don't Fragment Flag
- •Malicious Fragmentation
- •TCP Header Fragments
- •Teardrop
- •Summary
- •Chapter 4. ICMP
- •ICMP Theory
- •Why Do You Need ICMP?
- •Where Does ICMP Fit In?
- •Understanding ICMP
- •Summary of ICMP Theory
- •Mapping Techniques
- •Tireless Mapper
- •Efficient Mapper
- •Clever Mapper
- •Cerebral Mapper
- •Summary of Mapping
- •Normal ICMP Activity
- •Host Unreachable
- •Port Unreachable
- •Admin Prohibited
- •Need to Frag
- •Time Exceeded In-Transit
- •Embedded Information in ICMP Error Messages
- •Summary of Normal ICMP
- •Malicious ICMP Activity
- •Smurf Attack
- •Tribe Flood Network
- •WinFreeze
- •Loki
- •Unsolicited ICMP Echo Replies
- •Theory 1: Spoofing
- •Theory 2: TFN
- •Theory 3: Loki
- •Summary of Malicious ICMP Traffic
- •To Block or Not to Block
- •Unrequited ICMP Echo Requests
- •Kiss traceroute Goodbye
- •Silence of the LANs
- •Broken Path MTU Discovery
- •Summary
- •Chapter 5. Stimulus and Response
- •The Expected
- •Request for Comments
- •TCP Stimulus-Response
- •Destination Host Listens on Requested Port
- •Destination Host Not Listening on Requested Port
- •Destination Host Doesn't Exist
- •Destination Port Blocked
- •Destination Port Blocked, Router Doesn't Respond
- •UDP Stimulus-Response
- •Destination Host Listening on Requested Port
- •Destination Host Not Listening on Requested Port
- •Windows tracert
- •TCPdump of tracert
- •Protocol Benders
- •Active FTP
- •Passive FTP
- •UNIX Traceroute
- •Summary of Expected Behavior and Protocol Benders
- •Abnormal Stimuli
- •Evasion Stimulus, Lack of Response
- •Evil Stimulus, Fatal Response
- •No Stimulus, All Response
- •Unconventional Stimulus, Operating System Identifying Response
- •Bogus "Reserved" TCP Flags
- •Anomalous TCP Flag Combinations
- •No TCP Flags
- •Summary of Abnormal Stimuli
- •Summary
- •Chapter 6. DNS
- •Back to Basics: DNS Theory
- •The Structure of DNS
- •Steppin' Out on the Internet
- •DNS Resolution Process
- •TCPdump Output of Resolution
- •Strange TCPdump Notation
- •Caching: Been There, Done That
- •Reverse Lookups
- •Master and Slave Name Servers
- •Zone Transfers
- •Summary of DNS Theory
- •Using DNS for Reconnaissance
- •The nslookup Command
- •Name That Name Server
- •HINFO: Snooping for Details
- •List Zone Map Information
- •Tainting DNS Responses
- •A Weak Link
- •Cache Poisoning
- •Summary
- •Part II: Traffic Analysis
- •Chapter 7. Packet Dissection Using TCPdump
- •Why Learn to Do Packet Dissection?
- •Sidestep DNS Queries
- •Normal Query
- •Evasive Query
- •Introduction to Packet Dissection Using TCPdump
- •Where Does the IP Stop and the Embedded Protocol Begin?
- •Other Length Fields
- •The IP Datagram Length
- •Increasing the Snaplen
- •Dissecting the Whole Packet
- •Freeware Tools for Packet Dissection
- •Ethereal
- •tcpshow
- •Summary
- •Chapter 8. Examining IP Header Fields
- •Insertion and Evasion Attacks
- •Insertion Attacks
- •Evasion Attacks
- •IP Header Fields
- •IP Version Number
- •Protocol Number
- •The Don't Fragment (DF) Flag
- •The More Fragments (MF) Flag
- •Mapping Using Incomplete Fragments
- •IP Numbers
- •IP Identification Number
- •Time to Live (TTL)
- •Looking at the IP ID and TTL Values Together to Discover Spoofing
- •IP Checksums
- •Summary
- •Chapter 9. Examining Embedded Protocol Header Fields
- •Ports
- •TCP Checksums
- •TCP Sequence Numbers
- •Acknowledgement Numbers
- •TCP Flags
- •TCP Corruption
- •ECN Flag Bits
- •Operating System Fingerprinting
- •Retransmissions
- •Using Retransmissions Against a Hostile Host—LaBrea Tarpit Version 1
- •TCP Window Size
- •LaBrea Version 2
- •Ports
- •UDP Port Scanning
- •UDP Length Field
- •ICMP
- •Type and Code
- •Identification and Sequence Numbers
- •Misuse of ICMP Identification and Sequence Numbers
- •Summary
- •Chapter 10. Real-World Analysis
- •You've Been Hacked!
- •Netbus Scan
- •How Slow Can you Go?
- •RingZero Worm
- •Summary
- •Chapter 11. Mystery Traffic
- •The Event in a Nutshell
- •The Traffic
- •DDoS or Scan
- •Source Hosts
- •Destination Hosts
- •Scanning Rates
- •Fingerprinting Participant Hosts
- •Arriving TTL Values
- •TCP Window Size
- •TCP Options
- •TCP Retries
- •Summary
- •Part III: Filters/Rules for Network Monitoring
- •Chapter 12. Writing TCPdump Filters
- •The Mechanics of Writing TCPdump Filters
- •Bit Masking
- •Preserving and Discarding Individual Bits
- •Creating the Mask
- •Putting It All Together
- •TCPdump IP Filters
- •Detecting Traffic to the Broadcast Addresses
- •Detecting Fragmentation
- •TCPdump UDP Filters
- •TCPdump TCP Filters
- •Filters for Examining TCP Flags
- •Detecting Data on SYN Connections
- •Summary
- •Chapter 13. Introduction to Snort and Snort Rules
- •An Overview of Running Snort
- •Snort Rules
- •Snort Rule Anatomy
- •Rule Header Fields
- •The Action Field
- •The Protocol Field
- •The Source and Destination IP Address Fields
- •The Source and Destination Port Field
- •Direction Indicator
- •Summary
- •Chapter 14. Snort Rules - Part II
- •Format of Snort Options
- •Rule Options
- •Msg Option
- •Logto Option
- •Ttl Option
- •Id Option
- •Dsize Option
- •Sequence Option
- •Acknowledgement Option
- •Itype and Icode Options
- •Flags Option
- •Content Option
- •Offset Option
- •Depth Option
- •Nocase Option
- •Regex Option
- •Session Option
- •Resp Option
- •Tag Option
- •Putting It All Together
- •Summary
- •Part IV: Intrusion Infrastructure
- •Chapter 15. Mitnick Attack
- •Exploiting TCP
- •IP Weaknesses
- •SYN Flooding
- •Covering His Tracks
- •Identifying Trust Relationships
- •Examining Network Traces
- •Setting Up the System Compromise?
- •Detecting the Mitnick Attack
- •Trust Relationship
- •Port Scan
- •Host Scan
- •Connections to Dangerous Ports
- •TCP Wrappers
- •Tripwire
- •Preventing the Mitnick Attack
- •Summary
- •Chapter 16. Architectural Issues
- •Events of Interest
- •Limits to Observation
- •Human Factors Limit Detects
- •Limitations Caused by the Analyst
- •Limitations Caused by the CIRTs
- •Severity
- •Criticality
- •Lethality
- •Countermeasures
- •Calculating Severity
- •Scanning for Trojans
- •Analysis
- •Severity
- •Host Scan Against FTP
- •Analysis
- •Severity
- •Sensor Placement
- •Outside Firewall
- •Sensors Inside Firewall
- •Both Inside and Outside Firewall
- •Analyst Console
- •Faster Console
- •False Positive Management
- •Display Filters
- •Mark as Analyzed
- •Drill Down
- •Correlation
- •Better Reporting
- •Event-Detection Reports
- •Weekly/Monthly Summary Reports
- •Summary
- •Chapter 17. Organizational Issues
- •Organizational Security Model
- •Security Policy
- •Industry Practice for Due Care
- •Security Infrastructure
- •Implementing Priority Countermeasures
- •Periodic Reviews
- •Implementing Incident Handling
- •Defining Risk
- •Risk
- •Accepting the Risk
- •Trojan Version
- •Malicious Connections
- •Mitigating or Reducing the Risk
- •Network Attack
- •Snatch and Run
- •Transferring the Risk
- •Defining the Threat
- •Recognition of Uncertainty
- •Risk Management Is Dollar Driven
- •How Risky Is a Risk?
- •Quantitative Risk Assessment
- •Qualitative Risk Assessments
- •Why They Don't Work
- •Summary
- •Chapter 18. Automated and Manual Response
- •Automated Response
- •Architectural Issues
- •Response at the Internet Connection
- •Internal Firewalls
- •Host-Based Defenses
- •Throttling
- •Drop Connection
- •Shun
- •Proactive Shunning
- •Islanding
- •Reset
- •Honeypot
- •Proxy System
- •Empty System
- •Honeypot Summary
- •Manual Response
- •Containment
- •Freeze the Scene
- •Sample Fax Form
- •On-Site Containment
- •Site Survey
- •System Containment
- •Hot Search
- •Eradication
- •Recovery
- •Lessons Learned
- •Summary
- •Chapter 19. Business Case for Intrusion Detection
- •Part One: Management Issues
- •Bang for the Buck
- •The Expenditure Is Finite
- •Technology Used to Destabilize
- •Network Impacts
- •IDS Behavioral Modification
- •The Policy
- •Part of a Larger Strategy
- •Part Two: Threats and Vulnerabilities
- •Threat Assessment and Analysis
- •Threat Vectors
- •Threat Determination
- •Asset Identification
- •Valuation
- •Vulnerability Analysis
- •Risk Evaluation
- •Part Three: Tradeoffs and Recommended Solution
- •Identify What Is in Place
- •Identify Your Recommendations
- •Identify Options for Countermeasures
- •Cost-Benefit Analysis
- •Follow-On Steps
- •Repeat the Executive Summary
- •Summary
- •Chapter 20. Future Directions
- •Increasing Threat
- •Improved Targeting
- •How the Threat Will Be Manifested
- •Defending Against the Threat
- •Skills Versus Tools
- •Analysts Skill Set
- •Improved Tools
- •Defense in Depth
- •Emerging Techniques
- •Virus Industry Revisited
- •Smart Auditors
- •Summary
- •Part V: Appendixes
- •Appendix A. Exploits and Scans to Apply Exploits
- •False Positives
- •All Response, No Stimulus
- •Scan or Response?
- •SYN Floods
- •Valid SYN Flood
- •False Positive SYN Flood
- •Back Orifice?
- •IMAP Exploits
- •10143 Signature Source Port IMAP
- •111 Signature IMAP
- •Source Port 0, SYN and FIN Set
- •Source Port 65535 and SYN FIN Set
- •DNS Zone Followed by 0, SYN FIN Targeting NFS
- •Scans to Apply Exploits
- •mscan
- •Son of mscan
- •Access Builder?
- •Single Exploit, Portmap
- •rexec
- •Targeting SGI Systems?
- •Discard
- •Weird Web Scans
- •IP-Proto-191
- •Summary
- •Appendix B. Denial of Service
- •Brute-Force Denial-of-Service Traces
- •Smurf
- •Directed Broadcast
- •Echo-Chargen
- •Elegant Kills
- •Teardrop
- •Land Attack
- •We're Doomed
- •nmap
- •Distributed Denial-of-Service Attacks
- •Intro to DDoS
- •DDoS Software
- •Trinoo
- •Stacheldraht
- •Summary
- •Appendix C. Detection of Intelligence Gathering
- •Network and Host Mapping
- •Host Scan Using UDP Echo Requests
- •Netmask-Based Broadcasts
- •Port Scan
- •Scanning for a Particular Port
- •Complex Script, Possible Compromise
- •"Random" Port Scan
- •Database Correlation Report
- •SNMP/ICMP
- •FTP Bounce
- •NetBIOS-Specific Traces
- •A Visit from a Web Server
- •Null Session
- •Stealth Attacks
- •Explicit Stealth Mapping Techniques
- •FIN Scan
- •Inverse Mapping
- •Answers to Domain Queries
- •Answers to Domain Queries, Part 2
- •Fragments, Just Fragments
- •Measuring Response Time
- •Echo Requests
- •Actual DNS Queries
- •Probe on UDP Port 33434
- •3DNS to TCP Port 53
- •Worms as Information Gatherers
- •Pretty Park Worm
- •RingZero
- •Summary
19:28:42.016237 10.10.10.155.www > codered.victim.com.2045: . ack 6 win 0 19:29:18.804962 codered.victim.com.2045 > 10.10.10.155.www: . 6:7(1) ack 1 win 8576 (DF)
19:29:18.805038 10.10.10.155.www > codered.victim.com.2045: . ack 6 win 0
We join our session after the faked ARP reply by the LaBrea host. For orienta-tion purposes, we see the three-way handshake completed by the Code Red victim host, codered.victim.com, and the LaBrea host pretending to be host 10.10.10.155. The codered.victim.com host then sends 5 bytes of data (in bold output) because that was the advertised window size of the bogus 10.10.10.155 host. The 10.10.10.155 LaBrea host responds with an acknowledgement of receipt of data, but a window size of 0. The codered.victim.com host waits a couple of seconds when it doesn't get any notification of a window size increase and sends a 1-byte window probe to 10.10.10.155. The LaBrea host lazily responds to the window probe essentially telling the inquirer to chill out; it is still alive and running, but is not ready for any data just yet. As you witness, this cycle is repeated with the probing host increasing its wait time for future probes and becoming tarpitted indefinitely.
UDP
UDP is a much less complicated protocol to discuss than TCP because it doesn't have any of the fields that ensure reliable delivery. UDP does not make any guarantees that data will be delivered and leaves this function to applications to handle. This section will examine the fields
found in the UDP header and how UDP port scanning is accomplished.
Ports
Just as with TCP ports, UDP port fields are two separate 16-bit fields in the TCP header—one for source and another for destination. The valid range of values is between 1 and 65535; the use of port 0 is typically a signature of unusual activity.
When a source host wishes to connect to a destination host, an ephemeral port is typically selected in the range of ports greater than 1023. For each new sending connection, a different ephemeral port should be selected.
UDP Port Scanning
Unlike TCP that responds with either a positive response (SYN/ACK) to a listening port or a negative response (RESET/ACK) to a non-listening port, UDP doesn't respond to an initial connection with any positive feedback. But, a live host responds with a negative response of ICMP "port unreachable" to a non-listening UDP port. This is how scanners determine if the UDP port is listening or not. This is another more stealthy way to scan for live hosts, assuming the site does not block outbound ICMP error messages.
So, the absence of an ICMP "port unreachable" error is construed as an open port. What if the scanning packet got dropped on its way to the target host? Or what if the target host responds with an ICMP "port unreachable" message, but the site blocks outbound ICMP messages? Or what if the site blocks inbound UDP and blocks all outbound ICMP or ICMP unreachable messages so that the scanner cannot receive an ICMP "admin prohibited" message to know this? This can be misconstrued as a listening port. Nmap scans the same UDP ports many times to try to deal with the case of dropped packets. If one packet is dropped and the network is not under duress or having problems, chances are one of the repeated packets will not be dropped. And once again, nmap is intelligent enough to know that the lack of any response is more likely an indication of filtering of some sort by the destination site than it is of all UDP ports listening. This is a UDP port scan in the 32771 to 34000 range to look for open Remote Procedure Call (RPC) ports on a Solaris host. Nmap found many of these ports open. It assumes that a port is open if no ICMP "port unreachable" message was returned. As we have discussed, this is not