
- •Network Intrusion Detection, Third Edition
- •Table of Contents
- •Copyright
- •About the Authors
- •About the Technical Reviewers
- •Acknowledgments
- •Tell Us What You Think
- •Introduction
- •Chapter 1. IP Concepts
- •Layers
- •Data Flow
- •Packaging (Beyond Paper or Plastic)
- •Bits, Bytes, and Packets
- •Encapsulation Revisited
- •Interpretation of the Layers
- •Addresses
- •Physical Addresses, Media Access Controller Addresses
- •Logical Addresses, IP Addresses
- •Subnet Masks
- •Service Ports
- •IP Protocols
- •Domain Name System
- •Routing: How You Get There from Here
- •Summary
- •Chapter 2. Introduction to TCPdump and TCP
- •TCPdump
- •TCPdump Behavior
- •Filters
- •Binary Collection
- •TCPdump Output
- •Absolute and Relative Sequence Numbers
- •Dumping in Hexadecimal
- •Introduction to TCP
- •Establishing a TCP Connection
- •Server and Client Ports
- •Connection Termination
- •The Graceful Method
- •The Abrupt Method
- •Data Transfer
- •What's the Bottom Line?
- •TCP Gone Awry
- •An ACK Scan
- •A Telnet Scan?
- •TCP Session Hijacking
- •Summary
- •Chapter 3. Fragmentation
- •Theory of Fragmentation
- •All Aboard the Fragment Train
- •The Fragment Dining Car
- •The Fragment Caboose
- •Viewing Fragmentation Using TCPdump
- •Fragmentation and Packet-Filtering Devices
- •The Don't Fragment Flag
- •Malicious Fragmentation
- •TCP Header Fragments
- •Teardrop
- •Summary
- •Chapter 4. ICMP
- •ICMP Theory
- •Why Do You Need ICMP?
- •Where Does ICMP Fit In?
- •Understanding ICMP
- •Summary of ICMP Theory
- •Mapping Techniques
- •Tireless Mapper
- •Efficient Mapper
- •Clever Mapper
- •Cerebral Mapper
- •Summary of Mapping
- •Normal ICMP Activity
- •Host Unreachable
- •Port Unreachable
- •Admin Prohibited
- •Need to Frag
- •Time Exceeded In-Transit
- •Embedded Information in ICMP Error Messages
- •Summary of Normal ICMP
- •Malicious ICMP Activity
- •Smurf Attack
- •Tribe Flood Network
- •WinFreeze
- •Loki
- •Unsolicited ICMP Echo Replies
- •Theory 1: Spoofing
- •Theory 2: TFN
- •Theory 3: Loki
- •Summary of Malicious ICMP Traffic
- •To Block or Not to Block
- •Unrequited ICMP Echo Requests
- •Kiss traceroute Goodbye
- •Silence of the LANs
- •Broken Path MTU Discovery
- •Summary
- •Chapter 5. Stimulus and Response
- •The Expected
- •Request for Comments
- •TCP Stimulus-Response
- •Destination Host Listens on Requested Port
- •Destination Host Not Listening on Requested Port
- •Destination Host Doesn't Exist
- •Destination Port Blocked
- •Destination Port Blocked, Router Doesn't Respond
- •UDP Stimulus-Response
- •Destination Host Listening on Requested Port
- •Destination Host Not Listening on Requested Port
- •Windows tracert
- •TCPdump of tracert
- •Protocol Benders
- •Active FTP
- •Passive FTP
- •UNIX Traceroute
- •Summary of Expected Behavior and Protocol Benders
- •Abnormal Stimuli
- •Evasion Stimulus, Lack of Response
- •Evil Stimulus, Fatal Response
- •No Stimulus, All Response
- •Unconventional Stimulus, Operating System Identifying Response
- •Bogus "Reserved" TCP Flags
- •Anomalous TCP Flag Combinations
- •No TCP Flags
- •Summary of Abnormal Stimuli
- •Summary
- •Chapter 6. DNS
- •Back to Basics: DNS Theory
- •The Structure of DNS
- •Steppin' Out on the Internet
- •DNS Resolution Process
- •TCPdump Output of Resolution
- •Strange TCPdump Notation
- •Caching: Been There, Done That
- •Reverse Lookups
- •Master and Slave Name Servers
- •Zone Transfers
- •Summary of DNS Theory
- •Using DNS for Reconnaissance
- •The nslookup Command
- •Name That Name Server
- •HINFO: Snooping for Details
- •List Zone Map Information
- •Tainting DNS Responses
- •A Weak Link
- •Cache Poisoning
- •Summary
- •Part II: Traffic Analysis
- •Chapter 7. Packet Dissection Using TCPdump
- •Why Learn to Do Packet Dissection?
- •Sidestep DNS Queries
- •Normal Query
- •Evasive Query
- •Introduction to Packet Dissection Using TCPdump
- •Where Does the IP Stop and the Embedded Protocol Begin?
- •Other Length Fields
- •The IP Datagram Length
- •Increasing the Snaplen
- •Dissecting the Whole Packet
- •Freeware Tools for Packet Dissection
- •Ethereal
- •tcpshow
- •Summary
- •Chapter 8. Examining IP Header Fields
- •Insertion and Evasion Attacks
- •Insertion Attacks
- •Evasion Attacks
- •IP Header Fields
- •IP Version Number
- •Protocol Number
- •The Don't Fragment (DF) Flag
- •The More Fragments (MF) Flag
- •Mapping Using Incomplete Fragments
- •IP Numbers
- •IP Identification Number
- •Time to Live (TTL)
- •Looking at the IP ID and TTL Values Together to Discover Spoofing
- •IP Checksums
- •Summary
- •Chapter 9. Examining Embedded Protocol Header Fields
- •Ports
- •TCP Checksums
- •TCP Sequence Numbers
- •Acknowledgement Numbers
- •TCP Flags
- •TCP Corruption
- •ECN Flag Bits
- •Operating System Fingerprinting
- •Retransmissions
- •Using Retransmissions Against a Hostile Host—LaBrea Tarpit Version 1
- •TCP Window Size
- •LaBrea Version 2
- •Ports
- •UDP Port Scanning
- •UDP Length Field
- •ICMP
- •Type and Code
- •Identification and Sequence Numbers
- •Misuse of ICMP Identification and Sequence Numbers
- •Summary
- •Chapter 10. Real-World Analysis
- •You've Been Hacked!
- •Netbus Scan
- •How Slow Can you Go?
- •RingZero Worm
- •Summary
- •Chapter 11. Mystery Traffic
- •The Event in a Nutshell
- •The Traffic
- •DDoS or Scan
- •Source Hosts
- •Destination Hosts
- •Scanning Rates
- •Fingerprinting Participant Hosts
- •Arriving TTL Values
- •TCP Window Size
- •TCP Options
- •TCP Retries
- •Summary
- •Part III: Filters/Rules for Network Monitoring
- •Chapter 12. Writing TCPdump Filters
- •The Mechanics of Writing TCPdump Filters
- •Bit Masking
- •Preserving and Discarding Individual Bits
- •Creating the Mask
- •Putting It All Together
- •TCPdump IP Filters
- •Detecting Traffic to the Broadcast Addresses
- •Detecting Fragmentation
- •TCPdump UDP Filters
- •TCPdump TCP Filters
- •Filters for Examining TCP Flags
- •Detecting Data on SYN Connections
- •Summary
- •Chapter 13. Introduction to Snort and Snort Rules
- •An Overview of Running Snort
- •Snort Rules
- •Snort Rule Anatomy
- •Rule Header Fields
- •The Action Field
- •The Protocol Field
- •The Source and Destination IP Address Fields
- •The Source and Destination Port Field
- •Direction Indicator
- •Summary
- •Chapter 14. Snort Rules - Part II
- •Format of Snort Options
- •Rule Options
- •Msg Option
- •Logto Option
- •Ttl Option
- •Id Option
- •Dsize Option
- •Sequence Option
- •Acknowledgement Option
- •Itype and Icode Options
- •Flags Option
- •Content Option
- •Offset Option
- •Depth Option
- •Nocase Option
- •Regex Option
- •Session Option
- •Resp Option
- •Tag Option
- •Putting It All Together
- •Summary
- •Part IV: Intrusion Infrastructure
- •Chapter 15. Mitnick Attack
- •Exploiting TCP
- •IP Weaknesses
- •SYN Flooding
- •Covering His Tracks
- •Identifying Trust Relationships
- •Examining Network Traces
- •Setting Up the System Compromise?
- •Detecting the Mitnick Attack
- •Trust Relationship
- •Port Scan
- •Host Scan
- •Connections to Dangerous Ports
- •TCP Wrappers
- •Tripwire
- •Preventing the Mitnick Attack
- •Summary
- •Chapter 16. Architectural Issues
- •Events of Interest
- •Limits to Observation
- •Human Factors Limit Detects
- •Limitations Caused by the Analyst
- •Limitations Caused by the CIRTs
- •Severity
- •Criticality
- •Lethality
- •Countermeasures
- •Calculating Severity
- •Scanning for Trojans
- •Analysis
- •Severity
- •Host Scan Against FTP
- •Analysis
- •Severity
- •Sensor Placement
- •Outside Firewall
- •Sensors Inside Firewall
- •Both Inside and Outside Firewall
- •Analyst Console
- •Faster Console
- •False Positive Management
- •Display Filters
- •Mark as Analyzed
- •Drill Down
- •Correlation
- •Better Reporting
- •Event-Detection Reports
- •Weekly/Monthly Summary Reports
- •Summary
- •Chapter 17. Organizational Issues
- •Organizational Security Model
- •Security Policy
- •Industry Practice for Due Care
- •Security Infrastructure
- •Implementing Priority Countermeasures
- •Periodic Reviews
- •Implementing Incident Handling
- •Defining Risk
- •Risk
- •Accepting the Risk
- •Trojan Version
- •Malicious Connections
- •Mitigating or Reducing the Risk
- •Network Attack
- •Snatch and Run
- •Transferring the Risk
- •Defining the Threat
- •Recognition of Uncertainty
- •Risk Management Is Dollar Driven
- •How Risky Is a Risk?
- •Quantitative Risk Assessment
- •Qualitative Risk Assessments
- •Why They Don't Work
- •Summary
- •Chapter 18. Automated and Manual Response
- •Automated Response
- •Architectural Issues
- •Response at the Internet Connection
- •Internal Firewalls
- •Host-Based Defenses
- •Throttling
- •Drop Connection
- •Shun
- •Proactive Shunning
- •Islanding
- •Reset
- •Honeypot
- •Proxy System
- •Empty System
- •Honeypot Summary
- •Manual Response
- •Containment
- •Freeze the Scene
- •Sample Fax Form
- •On-Site Containment
- •Site Survey
- •System Containment
- •Hot Search
- •Eradication
- •Recovery
- •Lessons Learned
- •Summary
- •Chapter 19. Business Case for Intrusion Detection
- •Part One: Management Issues
- •Bang for the Buck
- •The Expenditure Is Finite
- •Technology Used to Destabilize
- •Network Impacts
- •IDS Behavioral Modification
- •The Policy
- •Part of a Larger Strategy
- •Part Two: Threats and Vulnerabilities
- •Threat Assessment and Analysis
- •Threat Vectors
- •Threat Determination
- •Asset Identification
- •Valuation
- •Vulnerability Analysis
- •Risk Evaluation
- •Part Three: Tradeoffs and Recommended Solution
- •Identify What Is in Place
- •Identify Your Recommendations
- •Identify Options for Countermeasures
- •Cost-Benefit Analysis
- •Follow-On Steps
- •Repeat the Executive Summary
- •Summary
- •Chapter 20. Future Directions
- •Increasing Threat
- •Improved Targeting
- •How the Threat Will Be Manifested
- •Defending Against the Threat
- •Skills Versus Tools
- •Analysts Skill Set
- •Improved Tools
- •Defense in Depth
- •Emerging Techniques
- •Virus Industry Revisited
- •Smart Auditors
- •Summary
- •Part V: Appendixes
- •Appendix A. Exploits and Scans to Apply Exploits
- •False Positives
- •All Response, No Stimulus
- •Scan or Response?
- •SYN Floods
- •Valid SYN Flood
- •False Positive SYN Flood
- •Back Orifice?
- •IMAP Exploits
- •10143 Signature Source Port IMAP
- •111 Signature IMAP
- •Source Port 0, SYN and FIN Set
- •Source Port 65535 and SYN FIN Set
- •DNS Zone Followed by 0, SYN FIN Targeting NFS
- •Scans to Apply Exploits
- •mscan
- •Son of mscan
- •Access Builder?
- •Single Exploit, Portmap
- •rexec
- •Targeting SGI Systems?
- •Discard
- •Weird Web Scans
- •IP-Proto-191
- •Summary
- •Appendix B. Denial of Service
- •Brute-Force Denial-of-Service Traces
- •Smurf
- •Directed Broadcast
- •Echo-Chargen
- •Elegant Kills
- •Teardrop
- •Land Attack
- •We're Doomed
- •nmap
- •Distributed Denial-of-Service Attacks
- •Intro to DDoS
- •DDoS Software
- •Trinoo
- •Stacheldraht
- •Summary
- •Appendix C. Detection of Intelligence Gathering
- •Network and Host Mapping
- •Host Scan Using UDP Echo Requests
- •Netmask-Based Broadcasts
- •Port Scan
- •Scanning for a Particular Port
- •Complex Script, Possible Compromise
- •"Random" Port Scan
- •Database Correlation Report
- •SNMP/ICMP
- •FTP Bounce
- •NetBIOS-Specific Traces
- •A Visit from a Web Server
- •Null Session
- •Stealth Attacks
- •Explicit Stealth Mapping Techniques
- •FIN Scan
- •Inverse Mapping
- •Answers to Domain Queries
- •Answers to Domain Queries, Part 2
- •Fragments, Just Fragments
- •Measuring Response Time
- •Echo Requests
- •Actual DNS Queries
- •Probe on UDP Port 33434
- •3DNS to TCP Port 53
- •Worms as Information Gatherers
- •Pretty Park Worm
- •RingZero
- •Summary
Part I: TCP/IP
1 IP Concepts
2 Introduction to TCPdump and TCP
3Fragmentation
4ICMP
5Stimulus and Response
6DNS
Chapter 1. IP Concepts
As you read this chapter, it will become apparent that you belong in one of two categories: the beginner category or that of the seasoned veteran. The Internet Protocol (IP) is a large and potentially intimidating topic that requires a gentle introduction for uninitiated beginners so as not to overwhelm them with foreign acronyms, details, and concepts. Therefore, the purpose of this first chapter is to expose newcomers to terms, concepts, and the ever-present acronyms of IP. The suite of protocols covered here is more commonly known as Transmission Control Protocol/Internet Protocol (TCP/IP). These protocols are required to communicate between hosts on the Internet—the worldwide infrastructure of networked hosts. Indeed, communication protocols other than TCP/IP exist (for instance, AppleTalk for Apple computers). These protocols are typically found on intranets, where associated hosts talk on a private network. Most Internet communications require TCP/IP, which is the standard for global communications between hosts and networks.
Those seasoned veteran readers who dabble in TCP/IP daily might be tempted to skip this chapter. Even so, you should give it a quick skim. If you ever need to explain a concept about IP (perhaps to the individual who signs off on your pay raise or bonus, for example), you might find this chapter's approach useful. Those of you who are getting your feet wet in this area will certainly benefit from this introduction.
This is an around-the-world introduction to TCP/IP presented in a single chapter. Many of the topics discussed in this introductory chapter are covered in much greater detail and complexity in upcoming chapters; those chapters contain the core content, but you need to be able to peel away the theoretical skin to understand them. Specifically, this chapter covers the following topics:
●The TCP/IP Internet model. This section examines the foundations of communications over the Internet, specifically communications made possible by using a common model known as the TCP/IP Internet model.
●Packaging of data on the Internet. This section reviews the encapsulation of data to be sent through different legs of a journey to its destination.
●Physical and logical addresses. This section highlights the different ways to identify a computer or host on the Internet.
●TCP/IP services and ports. This section explores how hosts communicate with each other for different purposes and through different applications.

●Domain Name System. This section focuses on the importance of host names and IP number translations.
●Routing. This section explains how data is directed from the sending computer to the receiving computer.
The TCP/IP Internet Model
Computer users often want to communicate with another computer on the Internet for some purpose or another (to view a web page on a remote web server, for instance). A response from a web server can seem almost instantaneous, but a lot of processes and infrastructures actually support this seemingly trivial act behind the scenes.
Layers
Figure 1.1 shows a logical roadmap of some of the processes involved in host-to-host communications. You begin the process of downloading a web page in the box labeled "Web browser." Before your request to see a web page can get to the web server, your computer must package the request and send it through various processes and layers. Each layer represents a logical leg in the journey from the sending computer to the receiving computer. After the sending computer packages the data through the different layers, it is delivered to the receiving computer over the Internet. The receiving computer unwraps the data layer by layer. An individual layer gets the data intended for it and passes the remainder of the message to upper layers.
Figure 1.1. The TCP/IP Internet model.
Although discussed in more detail later in this chapter, it is important now to briefly look at each layer. The following four layers comprise the TCP/IP Internet model:
∙Application layer. The application layer is the topmost layer (the request for a web page in the preceding example). Software on the sending and receiving computers supports the implementation of the application (the web browser and web server, for instance).
∙Transport layer. Below the application layer lays the transport layer. This layer encompasses many aspects of how the two hosts will communicate. This transport layer is often concerned with providing reliability over other inherently unreliable layers.
Two transport layers protocols will be covered: TCP, which is referred to as a reliable protocol because mechanisms ensure data delivery, and User Datagram Protocol (UDP), which makes no promise of reliable delivery. In this example application, TCP is required because of the unacceptability of data loss.
∙Network layer. Below the transport layer is the network layer, which is responsible for moving the data from the source computer to the destination computer (the web server in this case), often one hop or leg of the journey at a time. This hop is between a computer and a router or a router and a router, but it ultimately takes the data closer in routing space to its destination.
∙Link layer. The bottom layer is the link layer, which is the component that takes care of communications from a host to the physical medium on which it resides. In this case, that component is Ethernet. This layer is concerned with receiving and sending data from the host over a specific interface to the network.
Data Flow
Look at Figure 1.1 again. In theory, the data flow activity is this: The request for a web page "descends" the sender's layers, often referred to as the TCP/IP stack. It gets directed to the destination computer and "ascends" its TCP/IP stack. The vertical arrows between layers represent the up and down flow on the same computer. The horizontal arrows between computers signify that each layer talks to its "peer" layer on the communicating host. The two computers do not directly interact with each other, per se. When the request descends the sending computer's TCP/IP stack, it is packaged in such a manner that each layer has a message for its counterpart layer, and so they appear to be talking directly.
This concept is quite important and crucial to understanding this chapter and the TCP/IP model, in general. Therefore, it is important to reiterate the poignant points and elaborate on terminology. The term TCP/IP stack is used to denote the layered structure of processing a TCP/IP request or response. A process known as encapsulation does the implementation of the layering. This means that data on the sender's host gets wrapped with identifying information to assist the receiving host in parsing the received message layer by layer. Each layer on the sending host adds its own header, and the receiving host reverses the process by examining the message, stripping it of its header, and directing it to the appropriate layer. This process is repeated for the higher layers until the data reaches the uppermost layer, which finally processes the web page request. When the response is sent back, the entire process is repeated; now the web server host packages the data to be sent, it is delivered and received,