
- •Network Intrusion Detection, Third Edition
- •Table of Contents
- •Copyright
- •About the Authors
- •About the Technical Reviewers
- •Acknowledgments
- •Tell Us What You Think
- •Introduction
- •Chapter 1. IP Concepts
- •Layers
- •Data Flow
- •Packaging (Beyond Paper or Plastic)
- •Bits, Bytes, and Packets
- •Encapsulation Revisited
- •Interpretation of the Layers
- •Addresses
- •Physical Addresses, Media Access Controller Addresses
- •Logical Addresses, IP Addresses
- •Subnet Masks
- •Service Ports
- •IP Protocols
- •Domain Name System
- •Routing: How You Get There from Here
- •Summary
- •Chapter 2. Introduction to TCPdump and TCP
- •TCPdump
- •TCPdump Behavior
- •Filters
- •Binary Collection
- •TCPdump Output
- •Absolute and Relative Sequence Numbers
- •Dumping in Hexadecimal
- •Introduction to TCP
- •Establishing a TCP Connection
- •Server and Client Ports
- •Connection Termination
- •The Graceful Method
- •The Abrupt Method
- •Data Transfer
- •What's the Bottom Line?
- •TCP Gone Awry
- •An ACK Scan
- •A Telnet Scan?
- •TCP Session Hijacking
- •Summary
- •Chapter 3. Fragmentation
- •Theory of Fragmentation
- •All Aboard the Fragment Train
- •The Fragment Dining Car
- •The Fragment Caboose
- •Viewing Fragmentation Using TCPdump
- •Fragmentation and Packet-Filtering Devices
- •The Don't Fragment Flag
- •Malicious Fragmentation
- •TCP Header Fragments
- •Teardrop
- •Summary
- •Chapter 4. ICMP
- •ICMP Theory
- •Why Do You Need ICMP?
- •Where Does ICMP Fit In?
- •Understanding ICMP
- •Summary of ICMP Theory
- •Mapping Techniques
- •Tireless Mapper
- •Efficient Mapper
- •Clever Mapper
- •Cerebral Mapper
- •Summary of Mapping
- •Normal ICMP Activity
- •Host Unreachable
- •Port Unreachable
- •Admin Prohibited
- •Need to Frag
- •Time Exceeded In-Transit
- •Embedded Information in ICMP Error Messages
- •Summary of Normal ICMP
- •Malicious ICMP Activity
- •Smurf Attack
- •Tribe Flood Network
- •WinFreeze
- •Loki
- •Unsolicited ICMP Echo Replies
- •Theory 1: Spoofing
- •Theory 2: TFN
- •Theory 3: Loki
- •Summary of Malicious ICMP Traffic
- •To Block or Not to Block
- •Unrequited ICMP Echo Requests
- •Kiss traceroute Goodbye
- •Silence of the LANs
- •Broken Path MTU Discovery
- •Summary
- •Chapter 5. Stimulus and Response
- •The Expected
- •Request for Comments
- •TCP Stimulus-Response
- •Destination Host Listens on Requested Port
- •Destination Host Not Listening on Requested Port
- •Destination Host Doesn't Exist
- •Destination Port Blocked
- •Destination Port Blocked, Router Doesn't Respond
- •UDP Stimulus-Response
- •Destination Host Listening on Requested Port
- •Destination Host Not Listening on Requested Port
- •Windows tracert
- •TCPdump of tracert
- •Protocol Benders
- •Active FTP
- •Passive FTP
- •UNIX Traceroute
- •Summary of Expected Behavior and Protocol Benders
- •Abnormal Stimuli
- •Evasion Stimulus, Lack of Response
- •Evil Stimulus, Fatal Response
- •No Stimulus, All Response
- •Unconventional Stimulus, Operating System Identifying Response
- •Bogus "Reserved" TCP Flags
- •Anomalous TCP Flag Combinations
- •No TCP Flags
- •Summary of Abnormal Stimuli
- •Summary
- •Chapter 6. DNS
- •Back to Basics: DNS Theory
- •The Structure of DNS
- •Steppin' Out on the Internet
- •DNS Resolution Process
- •TCPdump Output of Resolution
- •Strange TCPdump Notation
- •Caching: Been There, Done That
- •Reverse Lookups
- •Master and Slave Name Servers
- •Zone Transfers
- •Summary of DNS Theory
- •Using DNS for Reconnaissance
- •The nslookup Command
- •Name That Name Server
- •HINFO: Snooping for Details
- •List Zone Map Information
- •Tainting DNS Responses
- •A Weak Link
- •Cache Poisoning
- •Summary
- •Part II: Traffic Analysis
- •Chapter 7. Packet Dissection Using TCPdump
- •Why Learn to Do Packet Dissection?
- •Sidestep DNS Queries
- •Normal Query
- •Evasive Query
- •Introduction to Packet Dissection Using TCPdump
- •Where Does the IP Stop and the Embedded Protocol Begin?
- •Other Length Fields
- •The IP Datagram Length
- •Increasing the Snaplen
- •Dissecting the Whole Packet
- •Freeware Tools for Packet Dissection
- •Ethereal
- •tcpshow
- •Summary
- •Chapter 8. Examining IP Header Fields
- •Insertion and Evasion Attacks
- •Insertion Attacks
- •Evasion Attacks
- •IP Header Fields
- •IP Version Number
- •Protocol Number
- •The Don't Fragment (DF) Flag
- •The More Fragments (MF) Flag
- •Mapping Using Incomplete Fragments
- •IP Numbers
- •IP Identification Number
- •Time to Live (TTL)
- •Looking at the IP ID and TTL Values Together to Discover Spoofing
- •IP Checksums
- •Summary
- •Chapter 9. Examining Embedded Protocol Header Fields
- •Ports
- •TCP Checksums
- •TCP Sequence Numbers
- •Acknowledgement Numbers
- •TCP Flags
- •TCP Corruption
- •ECN Flag Bits
- •Operating System Fingerprinting
- •Retransmissions
- •Using Retransmissions Against a Hostile Host—LaBrea Tarpit Version 1
- •TCP Window Size
- •LaBrea Version 2
- •Ports
- •UDP Port Scanning
- •UDP Length Field
- •ICMP
- •Type and Code
- •Identification and Sequence Numbers
- •Misuse of ICMP Identification and Sequence Numbers
- •Summary
- •Chapter 10. Real-World Analysis
- •You've Been Hacked!
- •Netbus Scan
- •How Slow Can you Go?
- •RingZero Worm
- •Summary
- •Chapter 11. Mystery Traffic
- •The Event in a Nutshell
- •The Traffic
- •DDoS or Scan
- •Source Hosts
- •Destination Hosts
- •Scanning Rates
- •Fingerprinting Participant Hosts
- •Arriving TTL Values
- •TCP Window Size
- •TCP Options
- •TCP Retries
- •Summary
- •Part III: Filters/Rules for Network Monitoring
- •Chapter 12. Writing TCPdump Filters
- •The Mechanics of Writing TCPdump Filters
- •Bit Masking
- •Preserving and Discarding Individual Bits
- •Creating the Mask
- •Putting It All Together
- •TCPdump IP Filters
- •Detecting Traffic to the Broadcast Addresses
- •Detecting Fragmentation
- •TCPdump UDP Filters
- •TCPdump TCP Filters
- •Filters for Examining TCP Flags
- •Detecting Data on SYN Connections
- •Summary
- •Chapter 13. Introduction to Snort and Snort Rules
- •An Overview of Running Snort
- •Snort Rules
- •Snort Rule Anatomy
- •Rule Header Fields
- •The Action Field
- •The Protocol Field
- •The Source and Destination IP Address Fields
- •The Source and Destination Port Field
- •Direction Indicator
- •Summary
- •Chapter 14. Snort Rules - Part II
- •Format of Snort Options
- •Rule Options
- •Msg Option
- •Logto Option
- •Ttl Option
- •Id Option
- •Dsize Option
- •Sequence Option
- •Acknowledgement Option
- •Itype and Icode Options
- •Flags Option
- •Content Option
- •Offset Option
- •Depth Option
- •Nocase Option
- •Regex Option
- •Session Option
- •Resp Option
- •Tag Option
- •Putting It All Together
- •Summary
- •Part IV: Intrusion Infrastructure
- •Chapter 15. Mitnick Attack
- •Exploiting TCP
- •IP Weaknesses
- •SYN Flooding
- •Covering His Tracks
- •Identifying Trust Relationships
- •Examining Network Traces
- •Setting Up the System Compromise?
- •Detecting the Mitnick Attack
- •Trust Relationship
- •Port Scan
- •Host Scan
- •Connections to Dangerous Ports
- •TCP Wrappers
- •Tripwire
- •Preventing the Mitnick Attack
- •Summary
- •Chapter 16. Architectural Issues
- •Events of Interest
- •Limits to Observation
- •Human Factors Limit Detects
- •Limitations Caused by the Analyst
- •Limitations Caused by the CIRTs
- •Severity
- •Criticality
- •Lethality
- •Countermeasures
- •Calculating Severity
- •Scanning for Trojans
- •Analysis
- •Severity
- •Host Scan Against FTP
- •Analysis
- •Severity
- •Sensor Placement
- •Outside Firewall
- •Sensors Inside Firewall
- •Both Inside and Outside Firewall
- •Analyst Console
- •Faster Console
- •False Positive Management
- •Display Filters
- •Mark as Analyzed
- •Drill Down
- •Correlation
- •Better Reporting
- •Event-Detection Reports
- •Weekly/Monthly Summary Reports
- •Summary
- •Chapter 17. Organizational Issues
- •Organizational Security Model
- •Security Policy
- •Industry Practice for Due Care
- •Security Infrastructure
- •Implementing Priority Countermeasures
- •Periodic Reviews
- •Implementing Incident Handling
- •Defining Risk
- •Risk
- •Accepting the Risk
- •Trojan Version
- •Malicious Connections
- •Mitigating or Reducing the Risk
- •Network Attack
- •Snatch and Run
- •Transferring the Risk
- •Defining the Threat
- •Recognition of Uncertainty
- •Risk Management Is Dollar Driven
- •How Risky Is a Risk?
- •Quantitative Risk Assessment
- •Qualitative Risk Assessments
- •Why They Don't Work
- •Summary
- •Chapter 18. Automated and Manual Response
- •Automated Response
- •Architectural Issues
- •Response at the Internet Connection
- •Internal Firewalls
- •Host-Based Defenses
- •Throttling
- •Drop Connection
- •Shun
- •Proactive Shunning
- •Islanding
- •Reset
- •Honeypot
- •Proxy System
- •Empty System
- •Honeypot Summary
- •Manual Response
- •Containment
- •Freeze the Scene
- •Sample Fax Form
- •On-Site Containment
- •Site Survey
- •System Containment
- •Hot Search
- •Eradication
- •Recovery
- •Lessons Learned
- •Summary
- •Chapter 19. Business Case for Intrusion Detection
- •Part One: Management Issues
- •Bang for the Buck
- •The Expenditure Is Finite
- •Technology Used to Destabilize
- •Network Impacts
- •IDS Behavioral Modification
- •The Policy
- •Part of a Larger Strategy
- •Part Two: Threats and Vulnerabilities
- •Threat Assessment and Analysis
- •Threat Vectors
- •Threat Determination
- •Asset Identification
- •Valuation
- •Vulnerability Analysis
- •Risk Evaluation
- •Part Three: Tradeoffs and Recommended Solution
- •Identify What Is in Place
- •Identify Your Recommendations
- •Identify Options for Countermeasures
- •Cost-Benefit Analysis
- •Follow-On Steps
- •Repeat the Executive Summary
- •Summary
- •Chapter 20. Future Directions
- •Increasing Threat
- •Improved Targeting
- •How the Threat Will Be Manifested
- •Defending Against the Threat
- •Skills Versus Tools
- •Analysts Skill Set
- •Improved Tools
- •Defense in Depth
- •Emerging Techniques
- •Virus Industry Revisited
- •Smart Auditors
- •Summary
- •Part V: Appendixes
- •Appendix A. Exploits and Scans to Apply Exploits
- •False Positives
- •All Response, No Stimulus
- •Scan or Response?
- •SYN Floods
- •Valid SYN Flood
- •False Positive SYN Flood
- •Back Orifice?
- •IMAP Exploits
- •10143 Signature Source Port IMAP
- •111 Signature IMAP
- •Source Port 0, SYN and FIN Set
- •Source Port 65535 and SYN FIN Set
- •DNS Zone Followed by 0, SYN FIN Targeting NFS
- •Scans to Apply Exploits
- •mscan
- •Son of mscan
- •Access Builder?
- •Single Exploit, Portmap
- •rexec
- •Targeting SGI Systems?
- •Discard
- •Weird Web Scans
- •IP-Proto-191
- •Summary
- •Appendix B. Denial of Service
- •Brute-Force Denial-of-Service Traces
- •Smurf
- •Directed Broadcast
- •Echo-Chargen
- •Elegant Kills
- •Teardrop
- •Land Attack
- •We're Doomed
- •nmap
- •Distributed Denial-of-Service Attacks
- •Intro to DDoS
- •DDoS Software
- •Trinoo
- •Stacheldraht
- •Summary
- •Appendix C. Detection of Intelligence Gathering
- •Network and Host Mapping
- •Host Scan Using UDP Echo Requests
- •Netmask-Based Broadcasts
- •Port Scan
- •Scanning for a Particular Port
- •Complex Script, Possible Compromise
- •"Random" Port Scan
- •Database Correlation Report
- •SNMP/ICMP
- •FTP Bounce
- •NetBIOS-Specific Traces
- •A Visit from a Web Server
- •Null Session
- •Stealth Attacks
- •Explicit Stealth Mapping Techniques
- •FIN Scan
- •Inverse Mapping
- •Answers to Domain Queries
- •Answers to Domain Queries, Part 2
- •Fragments, Just Fragments
- •Measuring Response Time
- •Echo Requests
- •Actual DNS Queries
- •Probe on UDP Port 33434
- •3DNS to TCP Port 53
- •Worms as Information Gatherers
- •Pretty Park Worm
- •RingZero
- •Summary
capture it, and possibly crack the password file. You can find more information on Loki at www.phrack.com issue 49, article 6.
The danger in this whole scheme is that a seemingly innocuous protocol is being used to do some very sophisticated and potentially damaging exchanges. Again, ICMP was never intended to support applications such as this. My advice to the intrusion analyst is to regard ICMP traffic
with heightened suspicion and to stop just shy of outright paranoia.
Unsolicited ICMP Echo Replies
Now, try your hand at some analysis and put into practice some of the theory you just learned
about ICMP exploits by examining the output that follows: reply.com >192.168.127.41: icmp: echo reply
reply.com >192.168.127.41: icmp: echo reply reply.com >192.168.127.41: icmp: echo reply reply.com >192.168.127.41: icmp: echo reply reply.com >192.168.127.41: icmp: echo reply reply.com >192.168.127.41: icmp: echo reply
What you observe here is a host, reply.com, sending the 192.168.127.41 host ICMP echo reply traffic. This would not be unusual if the 192.168.127.41 host had sent an ICMP echo request eliciting these responses. However, this is not the case; no outbound ICMP echo requests were sent from 192.168.127.41. Why might someone initiate such activity? You learn possible reasons in the next three sections.
One thing to keep in mind is that for this kind of activity to be detected, you must have some kind of IDS or supporting software capable of maintaining state. This means that you must be able to determine whether any prior traffic had issued ICMP echo requests. Many IDSs do not maintain state information and cannot detect such anomalous activity. Let's examine some of the possible theories that might explain this anomalous activity.
Theory 1: Spoofing
The first theory poses the possibility that you see this traffic because someone has borrowed the source IP 192.168.127.41 and has issued ICMP echo requests to reply.com using the spoofed source IP; reply.com then replies to the real 192.168.127.41 IP address. If you saw ICMP echo replies from many other hosts on the same network as reply.com, you could be a Smurf target.
A dramatic increase in spoofing activity has arisen, so this is the most common explanation for this type of activity. Typically, when you have witnessed unsolicited ICMP echo replies that appear to be using your spoofed source IPs (in this example, 192.168.127.41), you might see other unsolicited activity from the same intermediate host (in this example, reply.com). You usually don't see this activity in isolation—you might see these replies going to many different 192.168.127 hosts, not just a single reply multiple times.
Theory 2: TFN
A second theory involves the TFN attack. You learned that the TFN master communicates with its TFN daemons using ICMP echo replies.
Therefore, another possibility is that the host receiving the unsolicited ICMP echo replies, 192.168.127.41, has become a victim TFN daemon. Although the ICMP identification value field is used to direct the daemon host to attack the victim, the exact value found in this field might not be predictable if the attacker changes the default source code. The more obvious way to determine whether the 192.168.127.41 has become an unwitting TFN daemon is to examine the outbound activity from 192.168.127.41 after receiving the ICMP echo requests. If it sends a flood of unexplained traffic outbound, it is possibly participating in a TFN attack.
Theory 3: Loki
The final theory is that this could be an exchange between a Loki client and a Loki server. When Loki traffic is exchanged, it might not have a pattern of each ICMP echo request generating a reply. It is possible for the Loki server to respond with multiple ICMP echo replies to a single ICMP echo request.