
- •Network Intrusion Detection, Third Edition
- •Table of Contents
- •Copyright
- •About the Authors
- •About the Technical Reviewers
- •Acknowledgments
- •Tell Us What You Think
- •Introduction
- •Chapter 1. IP Concepts
- •Layers
- •Data Flow
- •Packaging (Beyond Paper or Plastic)
- •Bits, Bytes, and Packets
- •Encapsulation Revisited
- •Interpretation of the Layers
- •Addresses
- •Physical Addresses, Media Access Controller Addresses
- •Logical Addresses, IP Addresses
- •Subnet Masks
- •Service Ports
- •IP Protocols
- •Domain Name System
- •Routing: How You Get There from Here
- •Summary
- •Chapter 2. Introduction to TCPdump and TCP
- •TCPdump
- •TCPdump Behavior
- •Filters
- •Binary Collection
- •TCPdump Output
- •Absolute and Relative Sequence Numbers
- •Dumping in Hexadecimal
- •Introduction to TCP
- •Establishing a TCP Connection
- •Server and Client Ports
- •Connection Termination
- •The Graceful Method
- •The Abrupt Method
- •Data Transfer
- •What's the Bottom Line?
- •TCP Gone Awry
- •An ACK Scan
- •A Telnet Scan?
- •TCP Session Hijacking
- •Summary
- •Chapter 3. Fragmentation
- •Theory of Fragmentation
- •All Aboard the Fragment Train
- •The Fragment Dining Car
- •The Fragment Caboose
- •Viewing Fragmentation Using TCPdump
- •Fragmentation and Packet-Filtering Devices
- •The Don't Fragment Flag
- •Malicious Fragmentation
- •TCP Header Fragments
- •Teardrop
- •Summary
- •Chapter 4. ICMP
- •ICMP Theory
- •Why Do You Need ICMP?
- •Where Does ICMP Fit In?
- •Understanding ICMP
- •Summary of ICMP Theory
- •Mapping Techniques
- •Tireless Mapper
- •Efficient Mapper
- •Clever Mapper
- •Cerebral Mapper
- •Summary of Mapping
- •Normal ICMP Activity
- •Host Unreachable
- •Port Unreachable
- •Admin Prohibited
- •Need to Frag
- •Time Exceeded In-Transit
- •Embedded Information in ICMP Error Messages
- •Summary of Normal ICMP
- •Malicious ICMP Activity
- •Smurf Attack
- •Tribe Flood Network
- •WinFreeze
- •Loki
- •Unsolicited ICMP Echo Replies
- •Theory 1: Spoofing
- •Theory 2: TFN
- •Theory 3: Loki
- •Summary of Malicious ICMP Traffic
- •To Block or Not to Block
- •Unrequited ICMP Echo Requests
- •Kiss traceroute Goodbye
- •Silence of the LANs
- •Broken Path MTU Discovery
- •Summary
- •Chapter 5. Stimulus and Response
- •The Expected
- •Request for Comments
- •TCP Stimulus-Response
- •Destination Host Listens on Requested Port
- •Destination Host Not Listening on Requested Port
- •Destination Host Doesn't Exist
- •Destination Port Blocked
- •Destination Port Blocked, Router Doesn't Respond
- •UDP Stimulus-Response
- •Destination Host Listening on Requested Port
- •Destination Host Not Listening on Requested Port
- •Windows tracert
- •TCPdump of tracert
- •Protocol Benders
- •Active FTP
- •Passive FTP
- •UNIX Traceroute
- •Summary of Expected Behavior and Protocol Benders
- •Abnormal Stimuli
- •Evasion Stimulus, Lack of Response
- •Evil Stimulus, Fatal Response
- •No Stimulus, All Response
- •Unconventional Stimulus, Operating System Identifying Response
- •Bogus "Reserved" TCP Flags
- •Anomalous TCP Flag Combinations
- •No TCP Flags
- •Summary of Abnormal Stimuli
- •Summary
- •Chapter 6. DNS
- •Back to Basics: DNS Theory
- •The Structure of DNS
- •Steppin' Out on the Internet
- •DNS Resolution Process
- •TCPdump Output of Resolution
- •Strange TCPdump Notation
- •Caching: Been There, Done That
- •Reverse Lookups
- •Master and Slave Name Servers
- •Zone Transfers
- •Summary of DNS Theory
- •Using DNS for Reconnaissance
- •The nslookup Command
- •Name That Name Server
- •HINFO: Snooping for Details
- •List Zone Map Information
- •Tainting DNS Responses
- •A Weak Link
- •Cache Poisoning
- •Summary
- •Part II: Traffic Analysis
- •Chapter 7. Packet Dissection Using TCPdump
- •Why Learn to Do Packet Dissection?
- •Sidestep DNS Queries
- •Normal Query
- •Evasive Query
- •Introduction to Packet Dissection Using TCPdump
- •Where Does the IP Stop and the Embedded Protocol Begin?
- •Other Length Fields
- •The IP Datagram Length
- •Increasing the Snaplen
- •Dissecting the Whole Packet
- •Freeware Tools for Packet Dissection
- •Ethereal
- •tcpshow
- •Summary
- •Chapter 8. Examining IP Header Fields
- •Insertion and Evasion Attacks
- •Insertion Attacks
- •Evasion Attacks
- •IP Header Fields
- •IP Version Number
- •Protocol Number
- •The Don't Fragment (DF) Flag
- •The More Fragments (MF) Flag
- •Mapping Using Incomplete Fragments
- •IP Numbers
- •IP Identification Number
- •Time to Live (TTL)
- •Looking at the IP ID and TTL Values Together to Discover Spoofing
- •IP Checksums
- •Summary
- •Chapter 9. Examining Embedded Protocol Header Fields
- •Ports
- •TCP Checksums
- •TCP Sequence Numbers
- •Acknowledgement Numbers
- •TCP Flags
- •TCP Corruption
- •ECN Flag Bits
- •Operating System Fingerprinting
- •Retransmissions
- •Using Retransmissions Against a Hostile Host—LaBrea Tarpit Version 1
- •TCP Window Size
- •LaBrea Version 2
- •Ports
- •UDP Port Scanning
- •UDP Length Field
- •ICMP
- •Type and Code
- •Identification and Sequence Numbers
- •Misuse of ICMP Identification and Sequence Numbers
- •Summary
- •Chapter 10. Real-World Analysis
- •You've Been Hacked!
- •Netbus Scan
- •How Slow Can you Go?
- •RingZero Worm
- •Summary
- •Chapter 11. Mystery Traffic
- •The Event in a Nutshell
- •The Traffic
- •DDoS or Scan
- •Source Hosts
- •Destination Hosts
- •Scanning Rates
- •Fingerprinting Participant Hosts
- •Arriving TTL Values
- •TCP Window Size
- •TCP Options
- •TCP Retries
- •Summary
- •Part III: Filters/Rules for Network Monitoring
- •Chapter 12. Writing TCPdump Filters
- •The Mechanics of Writing TCPdump Filters
- •Bit Masking
- •Preserving and Discarding Individual Bits
- •Creating the Mask
- •Putting It All Together
- •TCPdump IP Filters
- •Detecting Traffic to the Broadcast Addresses
- •Detecting Fragmentation
- •TCPdump UDP Filters
- •TCPdump TCP Filters
- •Filters for Examining TCP Flags
- •Detecting Data on SYN Connections
- •Summary
- •Chapter 13. Introduction to Snort and Snort Rules
- •An Overview of Running Snort
- •Snort Rules
- •Snort Rule Anatomy
- •Rule Header Fields
- •The Action Field
- •The Protocol Field
- •The Source and Destination IP Address Fields
- •The Source and Destination Port Field
- •Direction Indicator
- •Summary
- •Chapter 14. Snort Rules - Part II
- •Format of Snort Options
- •Rule Options
- •Msg Option
- •Logto Option
- •Ttl Option
- •Id Option
- •Dsize Option
- •Sequence Option
- •Acknowledgement Option
- •Itype and Icode Options
- •Flags Option
- •Content Option
- •Offset Option
- •Depth Option
- •Nocase Option
- •Regex Option
- •Session Option
- •Resp Option
- •Tag Option
- •Putting It All Together
- •Summary
- •Part IV: Intrusion Infrastructure
- •Chapter 15. Mitnick Attack
- •Exploiting TCP
- •IP Weaknesses
- •SYN Flooding
- •Covering His Tracks
- •Identifying Trust Relationships
- •Examining Network Traces
- •Setting Up the System Compromise?
- •Detecting the Mitnick Attack
- •Trust Relationship
- •Port Scan
- •Host Scan
- •Connections to Dangerous Ports
- •TCP Wrappers
- •Tripwire
- •Preventing the Mitnick Attack
- •Summary
- •Chapter 16. Architectural Issues
- •Events of Interest
- •Limits to Observation
- •Human Factors Limit Detects
- •Limitations Caused by the Analyst
- •Limitations Caused by the CIRTs
- •Severity
- •Criticality
- •Lethality
- •Countermeasures
- •Calculating Severity
- •Scanning for Trojans
- •Analysis
- •Severity
- •Host Scan Against FTP
- •Analysis
- •Severity
- •Sensor Placement
- •Outside Firewall
- •Sensors Inside Firewall
- •Both Inside and Outside Firewall
- •Analyst Console
- •Faster Console
- •False Positive Management
- •Display Filters
- •Mark as Analyzed
- •Drill Down
- •Correlation
- •Better Reporting
- •Event-Detection Reports
- •Weekly/Monthly Summary Reports
- •Summary
- •Chapter 17. Organizational Issues
- •Organizational Security Model
- •Security Policy
- •Industry Practice for Due Care
- •Security Infrastructure
- •Implementing Priority Countermeasures
- •Periodic Reviews
- •Implementing Incident Handling
- •Defining Risk
- •Risk
- •Accepting the Risk
- •Trojan Version
- •Malicious Connections
- •Mitigating or Reducing the Risk
- •Network Attack
- •Snatch and Run
- •Transferring the Risk
- •Defining the Threat
- •Recognition of Uncertainty
- •Risk Management Is Dollar Driven
- •How Risky Is a Risk?
- •Quantitative Risk Assessment
- •Qualitative Risk Assessments
- •Why They Don't Work
- •Summary
- •Chapter 18. Automated and Manual Response
- •Automated Response
- •Architectural Issues
- •Response at the Internet Connection
- •Internal Firewalls
- •Host-Based Defenses
- •Throttling
- •Drop Connection
- •Shun
- •Proactive Shunning
- •Islanding
- •Reset
- •Honeypot
- •Proxy System
- •Empty System
- •Honeypot Summary
- •Manual Response
- •Containment
- •Freeze the Scene
- •Sample Fax Form
- •On-Site Containment
- •Site Survey
- •System Containment
- •Hot Search
- •Eradication
- •Recovery
- •Lessons Learned
- •Summary
- •Chapter 19. Business Case for Intrusion Detection
- •Part One: Management Issues
- •Bang for the Buck
- •The Expenditure Is Finite
- •Technology Used to Destabilize
- •Network Impacts
- •IDS Behavioral Modification
- •The Policy
- •Part of a Larger Strategy
- •Part Two: Threats and Vulnerabilities
- •Threat Assessment and Analysis
- •Threat Vectors
- •Threat Determination
- •Asset Identification
- •Valuation
- •Vulnerability Analysis
- •Risk Evaluation
- •Part Three: Tradeoffs and Recommended Solution
- •Identify What Is in Place
- •Identify Your Recommendations
- •Identify Options for Countermeasures
- •Cost-Benefit Analysis
- •Follow-On Steps
- •Repeat the Executive Summary
- •Summary
- •Chapter 20. Future Directions
- •Increasing Threat
- •Improved Targeting
- •How the Threat Will Be Manifested
- •Defending Against the Threat
- •Skills Versus Tools
- •Analysts Skill Set
- •Improved Tools
- •Defense in Depth
- •Emerging Techniques
- •Virus Industry Revisited
- •Smart Auditors
- •Summary
- •Part V: Appendixes
- •Appendix A. Exploits and Scans to Apply Exploits
- •False Positives
- •All Response, No Stimulus
- •Scan or Response?
- •SYN Floods
- •Valid SYN Flood
- •False Positive SYN Flood
- •Back Orifice?
- •IMAP Exploits
- •10143 Signature Source Port IMAP
- •111 Signature IMAP
- •Source Port 0, SYN and FIN Set
- •Source Port 65535 and SYN FIN Set
- •DNS Zone Followed by 0, SYN FIN Targeting NFS
- •Scans to Apply Exploits
- •mscan
- •Son of mscan
- •Access Builder?
- •Single Exploit, Portmap
- •rexec
- •Targeting SGI Systems?
- •Discard
- •Weird Web Scans
- •IP-Proto-191
- •Summary
- •Appendix B. Denial of Service
- •Brute-Force Denial-of-Service Traces
- •Smurf
- •Directed Broadcast
- •Echo-Chargen
- •Elegant Kills
- •Teardrop
- •Land Attack
- •We're Doomed
- •nmap
- •Distributed Denial-of-Service Attacks
- •Intro to DDoS
- •DDoS Software
- •Trinoo
- •Stacheldraht
- •Summary
- •Appendix C. Detection of Intelligence Gathering
- •Network and Host Mapping
- •Host Scan Using UDP Echo Requests
- •Netmask-Based Broadcasts
- •Port Scan
- •Scanning for a Particular Port
- •Complex Script, Possible Compromise
- •"Random" Port Scan
- •Database Correlation Report
- •SNMP/ICMP
- •FTP Bounce
- •NetBIOS-Specific Traces
- •A Visit from a Web Server
- •Null Session
- •Stealth Attacks
- •Explicit Stealth Mapping Techniques
- •FIN Scan
- •Inverse Mapping
- •Answers to Domain Queries
- •Answers to Domain Queries, Part 2
- •Fragments, Just Fragments
- •Measuring Response Time
- •Echo Requests
- •Actual DNS Queries
- •Probe on UDP Port 33434
- •3DNS to TCP Port 53
- •Worms as Information Gatherers
- •Pretty Park Worm
- •RingZero
- •Summary
senior executive who is the sponsor of the team.
The most important section of an incident report is the executive summary. This is where you document why having a crack incident-handling team saved your organization a lot of money.
Summary
We face risks with every user or program we add to our systems and with every service we open on our firewall. Effective response, both automated and manual, is an effective mitigation technique. It enables your organization to move a bit faster and a bit more aggressively in this fast-paced world. Some of the automated responses include throttling to slow down the attack, dropping connections, shunning the attacker if he attempts to reconnect, islanding from the Internet in serious attacks, protocol tricks such as sending SYN/ACKs even if the host or service does not exist, and Reset kills.
Every organization has an incident-handling team; some just haven't formalized one. A formal team following the six-step process of preparation, identification, containment, eradication, recovery, and lessons learned will probably be more effective than an ad hoc response. The intrusion-detection analysts should always be members of the team and often are excellent choices for leading it.
One security model, time-based security, states that the time that we are protected is primarily based on the time it takes us to detect and react to an attack. As we tune our automated and manual responses, we train to react faster and hopefully better, increasing the protection we provide for our respective organizations.
Chapter 19. Business Case for Intrusion Detection
"Where do I start? What is the best ID tool to use?" A student asked this question after he had just completed the most advanced class we teach on the subject of intrusion detection, our hands-on, immersion curriculum. I was more than a little surprised by that question. We had spent the past six days and evenings hands on, learning about covert channels, malformed packets, and TCP fingerprinting within a connection. We had worked and worked to show the students why there is no silver bullet, why every IDS needs to be backed up by a network recorder that captures all the traffic. I decided to answer with a question. To the questioner, I must have sounded like someone from Oz, but what I said was, "If your organization doesn't currently have an intrusion-detection capability, why should they acquire one now? What's changed?" If your organization doesn't currently have an intrusion-detection capability, it will often be an uphill effort to champion one. To paraphrase Newton, an organization at rest tends to remain at rest.
We are coming to the close of this book and before we move to our final chapter, the future of intrusion detection, I would like to consider the business case for intrusion detection. This is an important subject. The chapters that precede this one give the sense that the knowledge
required to be an analyst is very technical, but fun. Also, I am sure you have a sense that the job of the intrusion-detection analyst with new detects and live attacks is exciting and challenging. Everyone that I know in the field is having a great time, but that isn't a good reason to deploy intrusion detection in your organization. If you made it past the first half of the book, you probably have a technical bent; so do I. But that isn't enough. Three of my heroes in intrusion detection, Ron Gula, Marcus Ranum, and Marty Roesch, have all started to say, "As a businessman…." Each of us is in business in some sense. This is still true if we work for the government, a university, or a not-for-profit. If you are even thinking about intrusion detection, your organization probably is fairly well funded. We have taken pains to develop a technical and architectural framework, but also to consider the business issues of risk management. If your ID capability does not fit in your organization's business model, it will be a source of friction. Let's work together to develop the strategies and processes needed to package intrusion detection for an organization.
This chapter was written for security professionals who:
●Don't currently have an intrusion-detection capability and are considering the merits of acquiring one
●Have a rudimentary capability and are considering a follow-on procurement or upgrade
●Have an existing capability and the organization is downsizing or restructuring and is in the process of evaluating this job function
In these cases, you aren't going to succeed by "wowing 'em" with technology. Appeals to duty or alarmist cries, "The hackers are coming, the hackers are coming," will not suffice to keep this project funded for the long haul— although it might well shake loose money for an additional purchase.
This chapter lays out a three-part plan that shows the importance of intrusion detection. The first part of the plan covers management issues, what I call the "fluffy stuff." Part one isn't technical, but it serves as the backdrop to allow management to support the intrusion-detection plan.
Part two of the plan answers the question "Why intrusion detection?" This is where you discuss the threat and the vulnerabilities; this is where you draw heavily on what you have learned about risk.
Part three offers your solutions and tradeoffs. The goal is to create a written report that serves as the project plan and justification. I have tried to lay this out so that it makes a nice presentation as well, because that is how one normally briefs senior management these days. Each item in a bulleted list is a suggestion for a PowerPoint slide. For extra credit, cut and paste the appropriate material from your written report into the notes section of the PowerPoint slides and suggest they be printed with notes pages showing. Few people take the time to do notes pages, so this will show you have it together.
All presentations and reports to management should start with an introduction called an Executive Summary. This is where you sum up the three most important points you are going to make. When you brief senior management, always be prepared to have your time cut short. "Can you do it in five minutes?" is not an unheard of request. In that case, you will show exactly three slides: your Executive Summary, Cost Summary, and Schedule. The Executive Summary is followed by a Problem Statement, in which you define the problem you are trying to solve. You probably want to extract a nice sound bite from the information in part two of the report for this. Your third slide is a roadmap where you define the structure of the presentation.