2.7.17S.y= |
( |
|
3) |
|
3x |
|
x 2 |
X |
1 |
|
|
|
|
|
|
|
1- xe |
|
+9+27+'3. |
|
|
|
|
|
|
2.7.176. Y = |
27r cos 2x + l |
sin 2x + x(sin 2x - cos 2x). |
|
|
|
|
2.7.177. Y = |
-(7r cos x + (7r + 1 - 2x) sin x)ex . |
|
|
|
|
|
|
2.7.178. eX(0,16 cos 3x + 0,28sin3x) + x 2 + 2,2x + 0,84. |
|
|
|
2.7.179.y=(I+x)e |
_2x |
+2e |
_2x |
.2.7.180.y=e |
x |
(e |
x |
- x |
2 |
-x+l)-2. |
|
2 |
|
2 |
|
|
|
2.7.181. YOH = C1 cos x + C2sinx + sinxin Itg~I· |
|
|
|
|
|
|
2.7.182. YOH = |
(C1 + C2x)e-X + xe- x In Ix!- |
|
|
|
|
|
|
2.7.183. YOH = C 1cos x + C2 sin x - |
xcosx + sinxin Isinxl· |
|
|
2.7.184. YOH = C1ev'2x +C2e-v'2x +ex2 . 2.7.18S. YOH = C 1e.,!6x +C2e-.,!6x +xex2 .
2.7.186. YOH = C1 sin x + C2 cos X - ";cos 2x. 2.7.187. Y1 = x, Y2 = |
Ixl. |
2.7.188. YICa3aH'Ue. MCrrOJIb30BaTb orrpe.n;e.miTeJIb BPOHCKOro. |
|
|
2.7.189. p |
2 |
- |
4q < 0.2.7.190. /1 (x) = |
{sin2 x,0:::;x:::;7r, |
|
|
|
|
0, |
|
7r < X :::; |
27r; |
|
|
|
|
|
|
|
|
°:::; x :::; |
|
|
|
|
|
|
|
|
h(x) = { |
o, |
|
2 |
|
7r, |
|
[a,b |
] |
[ |
] |
|
|
|
|
|
(x - |
|
7r < X :::; |
27r; |
|
= 0,27r. |
|
|
|
|
|
|
7r), |
|
|
|
|
|
|
{O, |
|
1:::; Ixl7r, |
|
|
|
|
|
Sin3 7rX, |
-7r:::; X :::; -1, |
|
|
|
2.7.191. /1 (x) = { ° |
- |
1 . / . |
h(x) = |
cos |
21!: |
-1 < x < 1., |
|
|
|
|
|
|
, |
|
|
< x "" |
7r, |
|
|
2 x, |
|
|
h(x) = {o, |
|
2 |
|
-7r :::; x:::; |
|
1 |
[a, b] |
= [-7r, -1] U [-1, 1] U [1, 7r]. |
|
|
(x - |
1), |
|
1 < x :::; |
7r; |
|
|
|
|
|
|
|
|
|
|
2.7.192. cos4x - 4 cos 2x + 3 - |
|
8sin4 x == 0. |
|
|
|
|
|
|
2.7.193. cos4x + 4cos2x + 3 - |
|
8cos4 X == 0. |
|
|
|
|
|
2.7.194. -5lnx +lnx2 + Inx3 + |
°·ln2 x + |
°·ln3 x == 0, x> 0. |
|
|
2.7.195. sin (x - ~) + sin (x + |
~) - .,f2sinx == 0. |
|
|
|
|
2.7.196. y... = eX + 2cosx + 3sinx. 2.7.197. Y = eX + 2e2x + 3e3x . |
|
2.7.198. YOH = C 1ex + C2X - |
x 2 -1. 2.7.199. Y = C 1 cos x + C2X cos X - sin x cos x. |
2.7.200. Y = (C1 + C2X) cos ~ + (C3 + C4X) sin ~. |
|
|
|
|
2.7.201. Y = C1 + C2 cos 2x + C3 sin 2x + X(C4 cos 2x + Cs sin2.c). |
|
|
2.7.202. Y = C1 + C2X + C3X2 + e3x (C4 + Csx). |
|
|
|
|
|
2.7.203. Y = (C1 + C2x)e2X + (C3 + C4x)e- 2X . |
|
|
|
|
|
2.7.204. Y = |
(C1 + C2X + lx2Inx - ~X2) e- 2x . |
|
|
|
|
|
2.7.20S. Y = (C1 + C2x)e X + (C3 + C4X) cos x + (Cs + C6x)sinx. |
|
|
2.7.206. Y = |
l(eX |
- |
e- X) + x 2. 2.7.207. Y = cos x + 2sinx + e- x - |
3ex + 2xex . |
2.7.208. Y = |
l(eX |
- |
e- X). 2.7.209. Y = |
~ex - le3X • |
2.7.210. Y = C1X + ~2. |
2.7.211. Y = C1 + C2X 2 + C3X4. 2.7.212. Y = |
C 1 |
3 + C2(X + 2). |
|
|
|
|
|
|
|
|
|
|
|
|
|
(x |
+ 2) |
|
|
|
2.7.213. Y = C 1 + C2 Inx + C3 x3 .
2.S.35. { |
y = G2 X , |
|
2 |
2 |
= G1X - |
2 |
|
X |
+ y |
t . |
rl1aBa 3. KpaTHble MHTerpal1bl
§ 1. ABOiiiHOiii IIIHTerpan. CBoiiiCTBa III MeTOAbl BblYIIICneHIllSi
3.1.3. (-2V2 + 1)471" < I < (2V2 + 1)471". 3.1.4. -7I"v'J< J < 7I"v'J.
3.1.5. -8 < I < ~. 3.1.6. -I < I < 471". 3.1.9. ~ W. 3.1.10. ~. 3.1.11. 4~.
YICa3a"ltUe. IIpH BhI'IHCJIeHHHXBHYTpeHHero HHTerpa.rra rrepeMeHHYIO BHeIIlHero
HHTerpa.rra Ha.n;o C'IHTaTb<pHKcHpoBaHHoit (rrOCToHHHOit):
/ |
2 dy (;3 + 2YX) 1:= /2 (1 + 2y) dy =4~. 3.1.12. in ~~. 3.1.13. 50,4. |
|
o |
|
|
|
|
0 |
|
|
|
|
|
|
|
|
3.1.16. 1. |
|
|
|
4 |
|
71" |
|
|
1 |
77 |
35 |
371". |
3.1.17. in 3· 3.1.1S. 6· |
3.1.19. 2" |
in 65· |
3.1.21. S· 3.1.22. |
|
|
|
|
|
|
|
|
3 |
3-x |
|
|
|
|
3.1.23. 71". 3.1.24. 32a 3. 3.1.27. / |
dx |
/ |
f |
dy. |
|
|
|
|
|
|
9 |
|
|
o |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
0 |
|
|
|
|
|
1 |
x |
|
2 |
2-x |
|
|
|
3 |
y |
|
3.1.2S. / |
dx / |
f |
dy + / dx |
/ |
f |
dy. 3.1.29. / dy |
/ f dx. |
|
|
o |
0 |
|
1 |
0 |
|
|
|
|
x |
-y |
|
|
../2/2 |
|
x |
|
1 |
|
>/1-x 2 |
|
|
|
|
3.1.30. |
/ dx / |
f |
dy + |
/ |
dx |
/ |
f dy. 3.1.32. 3. 3.1.33. 12~. |
|
|
|
o |
-x |
../2/2 |
->/1-x2 |
|
|
|
|
|
2 |
|
|
|
|
|
|
|
< 471". 3.1.37. 0 < I < 486. |
|
3.1.34. 3R. 3.1.35. O. 3.1.36. -471" < I |
|
3.1.3S. 4 < I |
< 8(5 - |
2V2). 3.1.39. 471" < I |
< 2271". 3.1.40. OTpHn;aTe.JIbHhIit. |
|
752 |
|
|
|
|
|
|
|
4 |
|
|
|
|
|
|
|
|
|
3.1.64. 5.3.1.65.0,5.3.1.66. 3.3.1.67.2,4.3.1.68.7.3.1.69.2,25. |
3.1.70. |
1 |
3 |
|
|
|
5 |
|
|
|
|
2 |
.3.1.73.0,25.3.1.74. |
7 |
4 |
24. |
.1.71. 12.3.1.72. (e-l) |
|
12. 3 .1.75. - 71"2' |
|
v'2 |
|
J4-2 y 2 |
|
|
|
1 |
|
2-J2y- y 2 |
|
|
|
3.1. 79. |
! dy |
! |
f dx. 3.1.80. !dy |
! |
fdx. |
|
|
|
|
-v'2 |
|
-J4-2y 2 |
|
|
|
0 |
|
|
# |
|
|
|
|
|
|
o |
|
4 |
|
|
2 |
|
2+J4-y2 |
|
|
|
|
1 |
arccos x |
|
3.1.81. !dy |
! f dx + !dy |
! |
|
f dx. 3.1.82. !dx |
! |
fdy. |
|
|
-4 |
|
-y |
|
|
0 |
2-J4- y 2 |
|
|
|
-1 |
",-1 |
|
|
|
27 |
|
|
|
4 |
|
|
27 |
|
3 + v'9 - |
4y |
|
9 |
|
|
|
16 |
|
|
|
3 Y |
|
|
16 |
|
|
|
2 |
|
|
4 |
_",2+ 3", |
3.1.83. |
! dy |
! |
fdx+ |
!dy |
|
|
! |
fdx= !dx |
! |
fdy. |
|
0 |
|
3 - |
y'9"=4y |
|
|
9 |
3 - |
v'9 - |
4y |
|
0 |
3 |
|
|
|
|
|
2 |
|
|
4 |
|
|
|
2 |
|
|
|
4'" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2,.. |
|
l+sin", |
|
0 |
1T+arcsin(y-l) |
|
|
|
|
|
3.1.84. !dx |
! |
fdy= !dy |
|
! |
|
|
fdx+ |
|
|
|
|
|
o |
|
-1 |
|
|
1 |
|
|
o |
|
|
|
|
|
|
|
|
1 |
,..+arcsin(y-l) |
|
0 |
|
|
2,.. |
|
|
|
|
0 |
21T |
|
|
+ !dy |
|
! |
fdx+ !dy |
|
! |
|
|
fdx+ !dy!fdx. |
|
2 |
arcsin(y-l) |
|
|
1 2,..+arcsin(y-l) |
|
-1 |
0 |
|
|
|
a |
|
J2a 2 |
-",2 |
|
a,jaY |
|
|
av'2 |
J2a 2 - y 2 |
|
3.1.85. !dx |
|
! |
|
fdy = !dy |
! |
fdx+ |
! dy |
! |
fdx. |
|
|
-a |
|
",2 |
|
|
|
O - ,jaY |
|
|
|
o |
-J2a 2 - y 2 |
|
|
|
|
|
|
a |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a. |
|
-Vax |
- x2 |
|
20, |
|
|
|
0 |
|
|
|
|
|
|
3.1.86. !dx |
|
! |
|
f dy + !dx |
|
! |
fdy= |
|
|
|
|
o |
-J2ax-x2 |
|
a. |
-V2ax-x2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
a+Ja 2 |
|
|
|
-~ |
|
a+Ja 2 -y2 |
|
|
a-~ |
|
-y2 |
|
|
|
|
|
I |
|
-a |
|
|
! |
|
fdx+ |
! |
dy |
|
|
! |
fdx+ |
|
fdx. |
|
a-Ja2 _ y 2 |
|
|
o |
|
a + v'''':;a2;;-_----,-4y.,2 |
|
|
|
a-Ja2 _ y 2 |
|
208 |
|
|
|
|
4 |
|
|
3 |
2 |
|
121 |
|
|
|
13 |
|
|
|
|
|
|
|
|
|
|
7I"a |
|
3.1.87. 15'3.1.88. 3. 3 |
.1.89. -"2'3.1.90. 486. |
3 .1.91. T'3.1.92. 3' |
3.1.93. 4071" < I |
< 18471". 3.1.94. 138,24 < I < 384. 3.1.95. 5 < I < 12. |
3.1.96. -2(.J2 + 1)71" < I |
< 2(.J2 - |
1)71". 3.1.97. IIo,ll;blHTerpaJIbHaJI <PYHKn:IU1 He |
HellpepbIBHa IIpH y = O. 3.1.98. IIo,ll;blHTerpaJIbHaJI <PYHKn:HH He HellpepblBHa B
2
TO'lKe(0,0). 3.1.99. 1< 3'
§2. 3aMeHa nepeMeHHblX B ABOiiiHOM MHTerpane
3.2.3.-8. 3.2.4. 12. 3.2.5. ~(q3/2 - p3/2) in £. YICa3a?tue. IfcilOJIb30BaTb
<P0PMYJIbI lIepeXO,ll;a K KPHBOJIHHeitHblM KOOp,ll;HHaTaM y2 = ux, xy = V, T. e.
x = (~)1/3, Y = (UV)1/3, |
PI = -3~' IJ(u,v)1 = |
3~. HOBaH 06JIacTb |
IfHTerpHpOBaHIfH G - |
IIpHMoyrOJIbHHK, a HCXO,11;Hbltt HHTerpaJI CBeCTH K |
|
b |
q |
|
|
|
|
|
1 fdu f |
t..d |
4 |
11 |
2 |
3 |
2 |
nOBTopHOMY 3 |
u |
v v |
v. 3.2.6. 5 3 |
15 . 3.2.S. |
37ra |
|
. 3.2.9. 37r· |
ap
3.2.10.-67r2 • 3.2.12. ~a3. 3.2.13. 1;8 7r. 3.2.14. ~a3. 3.2.15. :~7ra4.
3.2.17. 7r 3 3.2.1S. 7r 3 3.2.19. (7r6" - 8...12- 1°) 3 3.2.20. 327rab "3a . 6"a . 9 a . .
YICa3a'H.Ue. nepettTH K o606rn:eHHbIM IIOJIHPHbIM (3JIJIHIITH'IeCKHM)KOOp,11;HHaTaM
x = ar cos r.p, y = br sin r.p. npH 3TOM J' = abr.
|
arctg 2 |
|
8 cos <p |
3.2.21. |
f dr.p |
f f(rcosr.p,rsinr.p)rdr. |
|
rr/4 |
4cos<p |
|
rr/4 |
1/cos<p |
3.2.22. |
fdr.p |
f |
f(rcosr.p,rsinr.p)rdr. 3.2.23. ~a4. 3.2.24. 1~2. |
o0
3.2.25.0,25. 3.2.26. 0,45. 3.2.27. 0,757r. 3.2.2S. 1,57rR4. 3.2.29. 0,6257ra2.
r2 ( |
4) |
a3 |
247r. 3.2.33. |
7r2 |
a |
2 |
. |
3.2.30. 3" |
7r - 3 |
. 3.2.31. 12· 3.2.32. |
16· 3.2.34. |
|
acos",
3.2.40.f f(rcosr.p,rsinr.p)rdr.
3.2.41. |
|
b7~(rcos r.p, r sin r.p) rdr + i". |
dr.p |
ais~(rcosr.p,rsinr.p)rdr. |
|
|
o |
|
b |
|
0 |
|
|
|
|
arctg a |
|
|
3". |
|
|
|
|
|
|
T |
cosec <p |
|
|
b |
(3 |
3.2.42. f dr.p |
f f(rcosr.p,rsinr.p)rdr. 3.2.43. fUdu f f(u,uv)dv. |
". |
|
o |
|
a |
|
Q |
"4 |
|
|
,u; V) dv+ !d"}(UiV,"; V) dV] ~ |
3.2.44. ~[Idu If(Ui |
|
|
|
V |
|
|
|
~~ [1d" l~(UiV,U;V) du+ !dV 7~("iV,";V) du] |
|
rr |
v'3 cos2 <p sin <p |
|
|
|
3.2.45. v'3f |
dr.p |
f |
f(rcos r.p, v'3rsin r.p) rdr. |
|
o |
o |
|
|
|
|
b |
|
q |
V'Uv2) |
rr/2 |
4 |
3.2.46. ! f |
duu f |
f (V¥" |
dv. 3.2.47. ab f |
dr.p f f( v'R2 - r2) r dr. |
a |
p |
|
|
0 |
|
1 |
18 C60PHHIC _~ no wcweR MIlTeMaTHKC. 2 KYPC |
545 |
|
|
45 4 |
2y2 |
4 |
|
e - 1 |
|
3.3.46. 2. 3.3.47. 64 rra |
. 3.3.48. 15a |
|
.3.3.49. -2-' |
|
YICa3a'H.Ue. I1crrOJIb30BaTb 3aMeHY rrepeMeHHblx x |
= u(1 - |
v), y = uv. |
3.3.50. ~;(3rr - 2). 3.3.52. Mo(3; 4,8). 3.3.53. |
a |
~). 3.3.54. Mo (0, ~!). |
Mo C5 , |
3.3.55. Mo (0, 321~:)' 3.3.56. |
1~5. 3.3.57. ~a2. 3.3.58. ab[2V3 -In(2 + V3)]. |
3 |
|
4 2 |
|
|
28a2 |
|
|
|
6 |
1. |
a |
2 (rr |
) |
. 3.3. |
62 |
1 R2 (rr |
V3) |
|
|
|
|
3..59. |
3"P . |
3.3.60. -5-' 3.3. |
|
|
|
|
2" - |
1 |
|
|
. 2 |
|
|
"3 -""2 . |
|
|
|
|
3.3.63. lOrr. 3.3.64. 45. 3.3.65. rra;c |
2 |
|
|
|
|
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
. 3.3.66. 49 24' 3.3.67. 7,5. 3.3.68. 1~0 |
3.3.69. |
41 |
|
4 |
.3.3.70. |
4 |
|
|
3.3.71. a) |
4 |
|
|
|
8 |
|
11 |
Xc |
= |
|
|
|
|
|
11 |
|
|
162 a |
|
3"rrabc. |
3"; 6) |
|
3"' |
|
6; B) |
2, Yc = S· |
|
|
|
9 |
|
|
|
|
67 |
1273 |
|
|
|
603 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
|
|
|
|
3.3.72. 20.3.3.73. 60G, |
210 |
G, MG. 3.3.74. m = 8, Mx = My = |
|
3' |
|
|
|
Xc = Yc = i. 3.3.75. 4(m - |
n)R2. 3.3.76. 4a 2. 3.3.77. 8a2 arcsin £. |
|
|
|
|
|
|
|
|
3.3.78. Xc = ~a, Yc = O. 3.3.79. ~rraR2. 3.3.80. Mx = ~a3, My = ~rra3. |
|
|
|
|
3.3.81. Xc = |
2 |
|
a |
|
|
|
|
|
a 2 b |
|
|
|
|
|
|
|
= |
rr |
|
|
|
rr2 |
|
|
|
|
|
|
5a , Yc = |
2' 3.3.82. T' 3.3.83. Mx |
24' My = 1 - |
12' |
|
|
|
|
|
3.3.84. Jx = 4, Jy = 4. 3.3.85. |
|
lIb |
|
|
|
|
|
|
|
|
3"(b - a)((3 - a). |
3.3.86. 3"((3 - |
a) |
In 0;' |
|
|
|
|
|
|
|
4rr |
|
|
|
V |
M |
1 |
2 () |
|
|
|
|
ab |
YICa3a'H.Ue. |
3 |
aMeHHTb |
|
|
|
|
|
3.3.87. 3"" - |
|
3. 3.3.88'"4 a |
|
8 - rr . 3.3.89. 12' |
|
|
|
|
|
|
X |
Y |
|
|
X |
|
Y |
|
|
|
|
rra |
3 (M) |
|
|
|
|
|
|
32 |
3 |
|
|
|
|
3V3 - |
2 |
. |
0; + b = u, |
0; - |
b = v. 3.3.90. |
|
3 |
|
|
6v3 - |
5 .3.3.91. ga |
.3.3.92. |
|
|
|
2 |
|
|
3.3.93. rr;3. 3.3.94. ~1Ta3(y2-1).3.3.95. 8a 2. 3.3.96. a 2y2. |
|
|
|
|
|
|
|
|
|
3.3.97. ~rra2(3V3- 1). 3.3.98. J x |
= 112 , Jy = 12' 3.3.99. Jx = ;~rra\ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
|
4 |
, |
T |
35 |
4 33100 |
• |
J |
x |
|
rrab3 |
|
J |
y |
|
rra3b |
T |
|
rrab( |
a |
2 |
+ |
b2) |
. |
|
Jy = 32 rra |
|
"0 |
= 16 rra. |
•• |
|
|
|
|
= -4-' |
|
|
= -4-' |
"0 |
= 4 |
|
|
|
|
|
|
rra4 |
|
|
|
2R3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3.3.101. 8'3.3.102. T' |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
§ 4. |
TpoiiiHOiii IIIHTe"pan. CBoiiiCTBa. BblYIIICneHllle. nplilMeHeHllle |
|
|
|
|
|
|
|
|
3 |
|
|
|
|
1 |
|
|
|
|
2 |
|
|
|
|
|
1 |
( |
|
|
5) |
. 3.4.6. |
|
|
|
|
|
1 |
|
|
|
3.4.2. 2' 3.4.3. 144' 3.4.4. 2423"' 3.4.5. 21n |
|
2 -"8 |
|
O. 3.4.7. 48' |
|
|
|
3.4.9. rrR3. 3.4.10. ~a2. 3.4.11. ~r3 (rr - |
|
|
|
|
|
|
|
|
|
|
|
7 |
|
|
|
|
|
|
~). 3.4.13. 335.3.4.14. 24' |
|
|
|
|
|
|
|
rra3 |
|
|
(3rr - |
4)a3 |
|
|
|
|
|
|
rra3 |
|
|
|
|
|
|
3 |
|
|
|
8 |
|
|
|
|
|
4). |
|
3.4.15. T'3.4.16. |
12 |
|
|
.3.4.17. 4'3.4.19. 35' 3.4.20. 3"(3rr - |
|
3.4.21. 4,5a2rr. 3.4.22. 5; (3 - |
|
...15). 3.4.24. Mo (~,0, 0). 3.4.25. Mo (0,0, 1:). |
3.4.26. Mo (2,2, 35). 3.4.27. Mo (3, 281 , ~). 3.4.29. rr~;H (3R2 + 4H2). |
|
|
|
|
|
|
|
|
|
|
|
6 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3.4.30.rr~~H (2H2 + 3R2). 3.4.31. Ixy = 25; Iyz = 9; Ixz = 16.
3.4.33.k~bC(a+ b + c). 3.4.34. 162rr. 3.4.35. rrZ4 • 3.4.36. ~(3V3-1).
7 |
|
|
|
|
|
|
|
2 (3 |
11" |
- |
|
4) 2 |
|
|
1I"a3 |
|
1I"a3 |
|
|
|
|
|
|
|
|
|
3.4.37. 24' 3.4.38."3 |
|
|
|
|
|
a. 3.4.39. T'3.4.40. |
T'3.4.41. 16. |
|
|
|
4Rs |
|
|
|
|
|
|
|
|
|
4 |
|
|
|
|
|
3.4.45. 511". |
3.4.46. 27611". |
3.4.47. 28. |
|
3.4.42. -- 3' 3.4.43. 12 21' 3.4.44. 311". |
|
15a |
|
|
|
|
|
19 |
|
|
|
|
|
|
|
16 |
|
|
|
|
4 |
|
|
|
|
|
|
|
8 |
tn'f |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3.4.52. |
|
|
3.4.48. 18. 3.4.49. 2411"· 3.4.50. 311"· |
3.4.51. 1511"ah. |
21 1I"V R-. |
|
|
|
8 |
|
|
2 |
|
|
|
|
|
|
|
1 |
|
|
|
|
|
2 |
|
|
|
1 |
|
|
|
|
2 |
. 3.4.58. 5 - e |
-4 |
. |
3.4.53. ga |
|
. 3.4.54. 105' 3.4.55. e - |
|
. 3.4.56. 0. 3.4.57. |
|
|
|
1 |
|
|
b( |
a + |
b |
+ c |
) |
|
|
|
|
|
|
|
|
|
a3 h |
|
|
|
|
|
|
|
|
211" |
|
|
|
3.4.59. 2"ac |
|
|
|
|
. 3.4.60.11".3.4.61. T'3.4.62. 2. 3.4.63. T' |
|
|
49a |
3 |
|
3 .4 .65 . |
|
32 |
|
2 |
h. 3.4.66. |
1I"abc. 3.4.67. Mo |
(6 |
|
12 |
8) |
|
|
|
|
3.4.64. 864. |
|
|
ga |
|
5' 5' . |
|
|
|
|
|
|
|
|
18 |
|
15V6 |
|
|
12) |
.3.4.69. Mo |
(5a |
'" |
+ 5) |
) |
|
. |
|
|
|
|
|
|
3.4.68. Mo ( 7'- 6 - ' 7 |
|
|
0,0, 83 (6v3 |
|
|
|
|
|
|
|
|
3.4.70. Mo (0, 0, ~R(l + COSet)). 3.4.71. Af (b2 + c2), |
Af (a 2 + c2), |
Af (a 2 + b2), |
~(a 2 + b2 + c2). 3.4.72. ~MR2. 3.4.73. ~(b2 + c2), |
~(a 2 + c2), ~(a 2 + b2). |
3.4.74. Mxz = Myz = 0, Mxy = 9;, m= 9;, Mo(O,O, 1). 3.4.75. 4(4-31n3). |
|
11" |
|
|
|
|
|
|
|
11" |
|
|
|
|
|
|
|
1I"2a3 |
|
|
|
|
1 |
|
|
19 |
|
|
|
|
15 |
|
|
a3 |
3.4.76. 8 |
.3.4.77.2".3.4.78. 4y"2' 3.4.79. 2"'3.4.80. |
6 |
11", 211"· |
3.4.81. 360' |
3.4.82. e |
2 |
|
- |
e |
-2 |
- |
|
|
|
|
|
|
|
|
2 |
|
|
|
1 |
|
411"abc (a 2 |
b2 |
c2 ) |
. |
|
|
|
2. 3.4.83. 15' 3.4.84. 364' 3.4.85. |
~ p2 |
+ q2 |
+ r2 |
4 1 |
|
|
|
|
|
|
|
|
1 |
|
|
3 |
. 3.4.88. |
4 |
|
3 |
. 3.4.89. |
64 |
|
3 |
|
|
|
1I" |
2a3 |
|
|
3.4.86. "3 |
|
n 2. 3.4.87. |
|
|
"311"a |
|
2111"a |
|
10511"a |
|
. 3.4.90. -6-' |
|
|
3.4.91.Jxy = ~1I"abc3, Jxz = ~1I"ab3c, Jyz = ~1I"a3bc.
3.4.92.Jxy = 2;~f(1511" - 16), Jyz = ;~~~(10511" - 92),
Jxz = |
2ab3c( |
10511" - |
272 |
) |
. 3.4.93. |
8 |
bh (a 2 |
b2) |
8 h |
a |
4 |
. |
1575 |
|
21 a |
5 |
+"3 |
. 3.4.94. 15 |
|
3) |
(2 2 7 2) |
.3.4.97. |
55 + 9V3 3 |
3.4.95. Mo (0,0, 4c .3.4.96. Mo |
5a, 5a , 30 a |
65 c. |
rnaBa 4. KplilBonlllHeMHble III nOBepXHOCTHble IIIHTerpanbl
§ 1. KpMBonMHeiiiHbliii MHTerpan nepBoro POAa
|
|
V5 + 3 |
y"2 |
3 |
|
. ~ |
256 3 |
. |
4.1.5.0. 4.1.6.1n-- . 4.1.7. T1n2"' 4.1.8. v51n2. 4.1.9. 15a |
|
|
|
2 |
|
|
|
|
|
|
4.1.10. 2;va2 + b2(3a 2 + 411"2b2). 4.1.11. a2y"2. 4.1.12. 27ra2n+1 • |
|
4.1.13. |
ab(a2 +ab+b2) |
p2 |
|
|
. |
~-a |
( |
) |
.4.1.14. -3 (5V5 - |
1).4.1.18. Xo |
= b - a - h - ' |
|
3a+b |
|
|
|
|
|
+a |
h |
ab |
|
|
4a |
|
|
4a |
50 . 3 |
yo = 2" |
+ 2Vh2 _ a2' 4.1.19. Xo = 3'yo = 3'4.1.21. 8 |
+ 3 arcsm 5' |
4.1.22. 2b ( b + |
a |
|
~) |
. |
|
|
|
~ arcsin |
a |
|
|
|
|
|
|
\"a2 - |
b2 |
|
|
|
|
|
|
4.1.23. Ja 2 + b2 (7rJa2 + 47rb2 + ;: In 27rb + J:2 + 47rb2 ).
4.1.24. 27ra2Ja 2 + b2. 4.1.25.l4.1.26. R2. 4.1.27. 11 . 4 |
.1.28. ~~(10v'IO-1). |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
335 |
|
|
|
|
|
3 |
a! _ ! |
4.1.29.24.4.1.30. 3'(3J3 -1).4.1.31. 27.4.1.32. |
27ra. |
4.1.33. 2(e a - e |
a). |
4.1.34. In(l + V2). 4.1.35. (5:,0).4.1.36. (0, 2;). 4.1.37. (K'K)' |
|
|
|
|
|
|
|
4e 2 |
- |
|
|
|
|
|
a2 |
|
|
|
|
2 |
|
|
|
|
|
|
4.1.38. ( O,a e4 + |
2 |
|
1).4.1.39. -3 [(1+47r)2~ -1]. |
|
|
|
|
|
|
|
|
4e(e |
- |
|
1) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4.1.40. |
Ja 2 + b2 |
|
|
|
27rb |
|
|
1 |
|
t;; |
|
|
|
|
|
r.; |
(5a |
) |
|
|
|
ab |
arctg --a. |
4.1.41. 54 (56v7 -1).4.1.42. av3. 4.1.43. |
6,0 . |
|
|
|
|
|
a 2e 2" + err |
, Yc = |
a e2" - |
2e" |
|
|
|
|
|
|
|
2 |
|
4.1.44. Xc = -5 |
|
|
|
7r |
5 |
7r |
.4.1.45. 1 + V2. 4.1.46. 27ra . |
|
|
|
|
|
|
err -e2 |
|
|
|
err -e2 |
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
7r |
|
In2 |
|
|
|
|
ab(a2 +b2 +ab) |
7r |
|
4.1.47. 6'(..;8 -1).4.1.48. 16 - |
2'4.1.49. |
|
|
|
3(a + b) |
.4.1.50. (i' |
|
|
7ra |
2 |
|
|
|
2a3V2 |
|
|
1 |
[( |
R |
2 |
+ 4 |
)3/2] |
I |
|
|
4.1.51. -2-.4.1.52. -3-.4.1.53. 12 |
|
|
|
|
- 8 .4.1.54. a 3 • |
|
|
4.1.55. a2(2 - |
V2). 4.1.56. a2. 4.1.57. 6. 4.1.58. 1((7r2 + 2)~ - 2V2]. |
|
|
4.1.59.p |
2 |
|
r.; |
|
|
|
|
|
|
a [r . ; |
|
|
3 |
|
3 + 2J3] |
R 4J3 |
|
|
(2v |
2 - 1). |
4.1.60. '8 |
(3v 3-1)+2 In |
|
|
3 |
. 4.1.61.~. |
|
|
2Jm |
|
|
|
|
8mJV2 |
.4.1.64. |
27rmJR2 |
/ |
|
r.; |
|
|
4.1.62. -a-' 4.1.63. |
|
|
a |
|
|
|
|
|
|
|
IIpH R = hv2. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(h 2 + R2? 2 |
|
|
|
|
|
27rmJa |
|
a |
H |
b |
- |
|
|
|
|
|
|
|
|
|
|
27rmJ |
|
|
4.1.65. - b -- , r.n;e |
|
nOJIyocH 3JIJIHIIca. 4.1.66. - p - ' |
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
aba2 +ab+ b2 |
|
|
|
|
|
fa |
|
|
|
~ 1 |
,.---:'-~--::--~ |
|
|
|
|
|
|
_ |
|
b |
a4 - (a 2 - b2)X2 |
|
4.1.67. -3 |
|
a+ b' YICaaa'H.ue. S - |
X· (j,v a - - |
x- . (j, |
a2 - X |
2 |
dx |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
o |
|
|
|
|
|
|
|
|
|
|
4.1.68. 3~(v'(P2+y5)3_p3).4.1.69. 2~(b3-a3).4.1.70. ~; -~ln2+3:.
|
|
|
1 |
|
~ |
|
r.; |
256 |
|
2 |
. |
|
|
|
|
4.1.71. 6'(5v5 - 3v3). 4.1.72. Ka |
|
|
|
|
|
§ 2. |
KplllBonlllHeiiiHbliii IIIHTel'panBTOPOI'OPOAa |
|
|
4.2.2. 1) |
269; 2) |
395; 3) |
143; 4) |
311; 5) |
He BbIIIOJIHHeTCH. 4.2.3. 1) 128; |
2) |
134; 3) |
122; 4) |
126.4.2.4.1) |
4 |
|
0; 3) |
12 |
|
3'; 2) |
5; 4) -4; 5) 4. |
4 |
.2.6. |
3R VR7r |
|
|
ab |
|
|
|
(2 |
- |
b2) |
. 4.2.11. 307r. |
|
|
16 |
|
. 4.2.7. 7r. 4.2.8. 2'4.2.9. 7r a |
|
4.2.12. 2507rV5. 4.2.13. _1~8. 4.2.14. 7ra2. 4.2.16. '-1. 4.2.17. 3. 4.2.18. -37.
4.2.20. 1) |
2 |
; 2) |
10; 3) -10; 4) - 3:. YICaaa'H.ue. 2) X = 4 _ y2; |
23 |
3) y = 2 - |
~X2; 4) |
X = 4cost, Y = 2sint, t E [0, ~l4.2.21. 8. 4.2.22.12. |