
Сборник задач по высшей математике 2 том
.pdf
8.1.1. |
IIpOBepHTb, KaIme H3 CJIe.rr.yIOIIl;HX cPYHKD;Hii jlBJIjllOTCjI OpHrHHa- |
|||||
|
JIaMH, a KaKHe - |
HeT. |
|
= t.X(t); |
||
|
a) f(t) |
= 2e3t • cos 2t . X(t); |
6) f(t) |
|||
|
|
|
|
|
O' |
t < 0, |
|
B) f(t) |
= e t2 . X(t); |
r) f(t) |
= { 1, |
°~ t < 2, |
|
|
|
|
|
|
t, |
t ~ 2. |
a a) YCJIOBHe 1 B orrpe.n;eJIeHHH OpHrHHaJIa, OqeBH.n;HO, BbIIIOJIHeHO. ,il;aJIee, |
||||||
rrpH t ~ |
°cPYHKD;HjI f(t) - |
HerrpepbIBHa, a CJIe.n;OBaTeJIbHO H a6COJIIOTHO |
HHTerpHpyeMa Ha JII060M oTpe3Ke [0, a]. 3HaqHT, YCJIOBHe 2 TaK)J(e BbIIIOJIHjIeTCjI. HaKoHeD;, 12e3t cos 2tl ~ 2e3t , H B KaqeCTBe KOHCTaHT M H S B YCJIOBHH
3 orrpe.n;eJIeHHjI OpHrHHaJIa MO)J(HO BbI6paTb JII060e M > 2 H S = 3. CJIe.n;oBaTeJIbHO, f (t) jlBJIjleTCjI 0pHrHHaJIOM.
6) f(t) He jlBJIjleTCjI OpHrHHaJIOM, rrOCKOJIbKY HHTerpaJI
a
o/t dt
pacXO.n;HTCjI, a CJIe.n;OBaTeJIbHO, He BbIrrOJIHeHO YCJIOBHe 2 orrpe.n;eJIeHHjI OPHrHHaJIa.
B) f(t) He jlBJIjleTCjI OPHrHHaJIOM, rrOCKOJIbKY HepaBeHCTBO e t2 |
< Me st |
||
He MO)J(eT BbIIIOJIHjlTbCjI HH rrpH KaKHX S .n;JIjI Bcex t > 0, T. K. |
|
||
lim _e |
t 2 |
1 |
|
|
= lim _et(t-s) = 00. |
|
|
t-too M est |
t-too M |
|
|
OTclO.n;a CJIe.rr.yeT, 'ITO.n;JIjI JII06oro S BbIIIOJIHeHO HepaBeHCTBO e t2 |
> M est, |
HaqHHaji C HeKOToporo 3HaqeHHjI t (HHbIMH CJIOBaMH, cPYHKD;HjI et2 paCTeT 6bICTpee JII060ii cPYHKD;HH M est). °
r) YCJIOBHe 1, OqeBH.n;HO, BbIrrOJIHeHO. IIPH t ~ cPYHKD;HjI HerrpepbIBHa
BCIO.rr.y, KpOMe TOqKH t = 1, B KOTOpoii OHa HMeeT pa3pbIB 1-ro po.n;a. CJIe.n;o-
BaTeJIbHO, f(t) |
- HHTerpHPyeMa Ha JII060M OTpe3Ke [0, a]. |
T. K. If(t)1 |
~ et , |
||||
TO H YCJIOBHe 3 TO)J(e BbIIIOJIHeHO. CJIe.n;oBaTeJIbHO, f(t) - |
OpHrHHaJI. |
• |
|||||
8.1.2. |
f(t) |
= 3t . X(t). |
8.1.3. |
f(t) |
= t 3 . X(t). |
|
|
8.1.4. |
f(t) |
= e it . X(t). |
8.1.5. |
f(t) |
= e-t2 . X(t). |
|
|
8.1.6. |
f(t) |
= (t _1 1)2 • X(t). |
8.1.7. |
f(t) |
=In t . X(t). |
|
|
8.1.8. |
f(t) |
= tgt· X(t). |
8.1.9. |
f(t) |
= e(2+i)t . X(t - 1). |
||
8.1.10. |
f(t) |
= sin t· X(t + 1). |
8.1.11. |
f(t) |
= t.X(t - 1). |
|
|
8.1.12. |
f(t) |
= e it2 . X(t). |
8.1.13. |
f(t) |
= 2 V't+t4 . X(t). |
|
B .n;aJIbHeiillIeM BMecTO f(t)· X(t) MbI, KaK rrpaBHJIO, 6y.n;eM rrpOCTO rrHcaTb
f(t). '
490
8.1.14.HaiiTH H306proKeHHe <PYHKlI,HH f(t) = e(3+i)t, HCrrOJIb3YH rrpe06pa-
30BaHHe JIarrJIaca.
a f(t) HBJIHeTCH 0PHrHHaJIOM. TaK KaK le(3+i)tl < Me 3t .II.JlH M > 1, TO
H306proKeHHe F(P) 9TOii <PYHKlI,HH 6y.n;eT orrpe.n;eJIeHO H aHaJIHTHqHO B rrOJIYrrJIOCKOCTH Re p > 3. )J;aJIee, HaxO.n;HM
f(t) |
-;-t |
F(p) = !00e(3+i)t e -pt dt = |
!00e-(p-3-1)t dt = |
|
|
|
|
||||||
|
|
|
o |
|
|
0 |
|
|
|
|
|
|
|
|
|
|
|
_ |
r |
1 |
_(P_3_i)tI K |
_ |
|
1 |
• |
||
|
|
|
|
- |
- K~oo P - |
(3 + i) e |
|
0 |
- p - |
|
(3 + i)" |
|
|
Hmto |
ucnO.l/,'b3Y.R. npeo6pa30eaHU.R. JIan.!taca, |
Haftmu |
u306paJICeHU.R. c.!teoy'lO- |
||||||||||
~UX opUZUHa.!toe: |
|
|
|
|
|
|
|
|
|
|
|||
8.1.15. |
f(t) |
= 2. |
|
|
|
8.1.16. |
f(t) |
= e2t • |
|
|
|
||
8.1.17. |
f(t) |
= cos4t. |
|
|
8.1.18. |
f(t) |
= t. |
|
|
|
|||
|
|
f(t) |
= {I, |
t |
E[0,1], |
|
|
|
|
t, |
t |
E [0,1], |
|
8.1.19. |
|
8.1.20. |
f(t) |
= { 1, |
t |
E (1,2]' |
|
||||||
|
|
|
0, |
t |
~ [0,1]. |
|
|
|
|
0, |
t |
~ [0,2]. |
|
|
|
|
|
|
|
|
|
|
|
|
8.1.21.f(t) = et . x(t - 1).
8.1.22.llcrroJIb3YH Ta6JIHIJ,y H306proKeHHii H CBoiicTBO JIHHeiiHOCTH rrpe-
06pa30BaHHH JIarrJIaca, HaiiTH H306proKeHHH CJIe.n;yIOIllHx opHrH-
HaJIOB: |
= 2 + t3 + t cos 2t; |
|
|
= 3t ; |
||
a) |
f(t) |
6) |
f(t) |
|||
B) |
f(t) |
= cos2 t; , |
|
r) |
f(t) |
= sin 2t cos3t; |
)1;) f(t) = et +5. |
|
|
|
|
||
a a) 110 Ta6JIHlI,e HaxO.n;HM: |
|
|
|
|
||
1 -;-t |
1 |
|
= ~ (III), |
|
|
p2 -4 |
|
tcos2t-;-t (p2+4)2 (X). |
|||||
P (I), t 3 -;-t 31 |
||||||
|
|
p |
p |
|
|
|
CJIe.n;OBaTeJIbHO, rro cBoiicTBY JIHHeiiHOcTH (TeopeMa 1) rrpe06pa30BaHHH JIa-
IIJIaca rrOJIyqHM: 2 + t3 + t cos 2t = 2 . 1 + t3 + t cos 2t |
2 |
6 |
+ |
p2 |
4 |
||||
-;-t p- |
+ 4" |
2 |
- 2. |
||||||
6) 110CKOJIbKY 3t = et In 3, TO 3t -;-t |
|
|
|
|
P |
|
(P |
+ 4) |
|
1 |
|
(II). |
|
|
|
|
|
||
|
|
p-ln3 |
|
|
|
|
|
|
|
B) llcrroJIb3YH H3BeCTHYIO TpHrOHOMeTpHqeCKYIO <P0PMYJIY rrOHIDKeHHH |
|||||||||
CTerreHH, HMeeM: |
|
|
|
|
|
|
|
|
|
2t _ |
1 + cos 2t |
_ 1 |
1 + 1 |
2t |
|
|
|
|
|
cos - |
2 |
-2· |
|
2 cos . |
|
|
|
|
|
T. K. 1 -;-t p.! (I), a cos 2t -;-t |
- p2 (VI), TO rro CBoiicTBY JIHHeiiHOCTH rrpe- |
||||||||
, |
p +4 |
|
|
|
|
|
|
|
|
06pa30BaHHH JIarrJIaca rrOJIyqaeM: cos2 t -;-t |
l |
+ |
P |
|
|
|
|
||
|
|
|
2p |
2(p2 + 4) |
|
|
|
491
r) ITpe06pa3yeM OpliTHHa.JI f (t): sin 2t cos 3t = ~(sin 5t - sin t). Tor).l.a,
HCrrOJIb3Yjl <P0PMYJIY V Ta6JIHIJ;bI H CBOftCTBO JIHHeftHocTH rrpeo6pa30BaHHjI
JIarrJIaca, rrOJIyqaeM: sin 2t cos 3t -;+ |
1 |
5 2 |
- ~). |
|
||||
-2 ( 2 |
|
|||||||
|
|
|
|
p |
+5 |
p |
+1 |
|
)I.) T. K. et+5 = e5 et H et -;+ ~1 (II), |
TO et+5 = e5 ~1. |
• |
||||||
|
|
|
p- |
|
|
|
p- |
|
HcnO.!I:b3Y.R. ma6.1/,u'4Y u306pa;)tCe'Hui:i, 'Hai:imu u306pa;)tCe'HU.R. opUZU'Ha.l/,06: |
||||||||
8.1.23. |
f(t) = 3e-t |
+ et cos 3t. |
8.1.24. |
f(t) |
= 4sh2t - t2 • |
|
||
|
|
|
|
8.1.26. |
|
1 |
|
|
8.1.25. |
f(t) |
= te2t - |
sin 3t. |
f(t) |
= t2 + 1. |
|
||
|
|
|
||||||
8.1.27. |
f(t) |
= tet - I |
+ t2 et - 2 • |
8.1.28. |
f(t) |
= sin3 t. |
|
|
8.1.29. |
f(t) |
= cost cos 3t. |
8.1.30. |
f(t) |
= sin 4t sin 2t - |
t sin t. |
8.1.31.f(t) = et cos2 t.
8.1.32.IIcrroJIb3Yjl TeopeMY H306pIDKeHHjI, HaftTH H306pIDKeHHe OpHrHHaJIa f(t) = e3t cht.
|
|
|
|
|
|
|
|
|
P |
OTCIO).l.a |
o ITo <popMYJIe XII Ta6JIHIJ;bI H306pIDKeHHft HMeeM: ch t -;+ - 2 -- . |
||||||||||
rro TeopeMe CMew:eHHjI (Po = 3) rrOJIyqaeM: |
|
|
p |
-1 |
|
|||||
|
|
|
|
• |
||||||
|
|
e3t cht -;+ |
|
p-3 |
|
|
|
|||
|
|
(P - 3) |
2 |
-1 |
|
|
||||
Hai:imu u306pa;)tCe'HU.R. opUZU'Ha.l/,06, UCnO.l/,'b3Y.R. meope.M.y C.M.e~e'HU.R.: |
|
|||||||||
8.1.33. |
f(t) |
= te2t cos 3t. |
|
8.1.34. |
f(t) |
= e~ sh 2t. |
|
|
||
8.1.35. |
f(t) |
= e4t cos2 t. |
|
8.1.36. |
f(t) |
= te-t sin 2t. |
|
|||
8.1.37. |
HaftTH H306pIDKeHHe <PYHKIJ;HH g(t) = cos(t - 2)x(t - |
2). |
|
|||||||
o PaccMoTpHM <PYHKIJ;HIO f(t) |
= cost· X(t). Tor).l.a |
|
|
|
||||||
|
|
g(t) = f(t - |
2) = cos(t - |
2) . X(t - 2). |
|
|
||||
,I1;JIjI OpHrHHa.JIa f(t) HMeeM: f(t) -;+ |
.....2 |
P |
(VI). Tor).l.a rro TeopeMe 3arra3- |
|||||||
|
|
|
|
p |
+1 |
|
|
|
|
|
).l.bIBaHHjI OpHrHHa.JIa rrOJIyqHM: g(t) = f(t - |
2) -;+ e-2P • - p - . |
• |
||||||||
|
|
|
|
|
|
|
|
p2 + 1 |
|
|
Hai:imu |
u306pa;)tCe'Hue c.I/,eay'lO~ux fjJY'Hrt:'4ui:i: |
|
|
|
|
|||||
8.1.38. |
(t - |
3)3 . X(t - 3). |
|
8.1.39. |
e2t - |
4 • X(t - 2). |
|
8.1.40.ch(2t - 1) . X (t - ~).
8.1.41.(t - ~) sin(3t - 71") . X (t - ~).
8.1.42.HaftTH H306pIDKeHHjI <PYHKIJ;Hft, 3a).l.aHHbIX rpa<pHqeCKH:
a)rpa<pHK <PYHKIJ;HH f(t) rrpHBe).l.eH Ha pHC. 108;
6) rpa<PHK <PYHKIJ;HH f(t) rrpHBe).l.eH Ha pHC. 109.
o a) 1I306pIDKeHHe <PYHKIJ;HH f(t) MOlKHO, KOHeqHO, HaftTH HerrOCpe).l.CTBeHHO, rrpHMeHHB rrpe06pa30BaHHe JIarrJIaca. O).l.HaKO rrpow:e rrpe).l.CTaBHTb ee B
492

f(t) |
|
|
|
f(t) |
|
|
|
|
|
|
|
|
|
|
|
1 |
|
|
|
|
|
|
|
o |
1 |
t |
|
|
|
|
|
1 |
|
2 |
t |
|
Puc. 108 |
|
|
|
|
|
|
Puc. 109 |
|||
BH.n;e f(t) = |
X(t) - X(t - 1). |
110 Ta6JIHIJ;e |
X(t) |
-;+ |
~ |
(I). OTcIO.n;a rro Teo- |
|||||
peMe 3arra3.n;bIBaHIUI OpHrHHana HMeeM X(t |
- |
1) |
-;+ |
e-P |
|
||||||
p' CJIe.n;oBaTeJIbHO, |
|||||||||||
1 |
e-P |
|
|
|
|
|
|
|
|
|
|
f(t) -;+ p - |
p; |
|
|
|
|
|
|
|
|
|
|
6) I1pe.n;cTaBHM <PYHKII,HIO |
f(t) |
B BH.n;e: |
|
|
|
|
|
|
|
||
|
f(t) = t . X(t) |
- (t - 1) . X(t - |
1) - |
X(t - 2). |
|||||||
110 Ta6JIHIJ;e HaxO.n;HM g(t) = t'X(t) |
-;+ --\- (III) H X(t) |
-;+ |
~. ,I1;anee, comaCHO |
||||||||
|
|
|
|
p |
|
|
|
|
|
|
|
TeopeMe 3arra3.n;bIBaHHH opHrHHana, rrOJIyqaeM: |
|
|
|
|
|
||||||
g(t - 1) = (t - 1) . X(t - 1) |
e-P |
|
|
X(t - |
2) |
e- 2p |
|||||
-;+ -p2 |
|
H |
-;+ - p . |
||||||||
|
|
p |
|
p |
-2p |
|
|
|
|
• |
|
OKOHqaTeJIbHO HMeeM: f(t) -;+ |
1 |
|
-p |
|
|
|
|
|
|||
2" - |
~ - |
T' |
|
|
|
Hai1mu u306paJICeHUJI opUaUHa.l!06, 3aaaHH'btX apatjju"tec'ICu:
8.1.43.rpa<PHK <PYHKIJ;HH f(t) rrpHBe.n;eH Ha pHC. 110.
f(t)
|
I |
|
|
f(t) |
|
|
I |
|
|
|
|
|
I |
|
|
|
|
|
I |
|
|
|
|
1 -----!......-- |
|
1 |
|
||
|
I |
I |
|
|
|
|
I |
I |
|
|
|
|
I |
I |
|
|
|
|
I |
I |
|
|
|
o |
I |
I |
|
|
|
1 |
2 |
t |
2 |
t |
|
|
Puc. 110 |
|
Puc. 111 |
|
8.1.44.rpa<PHK <PYHKIJ;HH f(t) rrpHBe.n;eH Ha pHC. 111.
8.1.45. f(t) |
-_ {Sin t, |
t E [0,11'], r nrh |
rh |
f( |
t |
) |
rrpHBe.n;eH Ha |
0, |
PClA±'HK 'i'YHKIJ;HH |
|
|||||
|
t ¢ [0,11']. |
|
|
|
|
|
|
pHc.112. |
|
|
|
|
|
|
493

f(t) |
f(t) |
|
|
|
|
|
t |
|
|
2 |
|
|
t |
|
Puc. |
112 |
|
|
|
Puc. 113 |
|
|
|
||
8.1.46. |
rpa<PHK <PYHKlI,HH f(t) npHBe).!.eH Ha pHC. 113. |
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
(Xl |
|
|
8.1.47. |
Hail:TH H306pIDKeHlfe <PYHKlI,HH, 3a).l.aHHoil: PH).!.OM: |
2: X(t - |
n). |
||||||||
|
|
|
|
|
|
|
|
n=O |
|
||
8.1.48. |
Hail:TH H306pIDKeHHe nepHo).!.HqeCKoil: <PYHKlI,HH |
f(t) |
= {t} |
(3).!.ecb |
|||||||
|
{t} - ).!.P06HM qacTb qHCJIa t). |
|
|
|
|
|
|
||||
a cDYHKlI,HH f(t) - |
nepHO).!.HqeCKM C nepHo).!.oM T |
= 1. |
Ha oTpe3Ke [0,1] |
||||||||
OHa 3a).!.aeTCH paBeHCTBOM f(t) |
= t. PacCMOTPHM <PYHKlI,HIO |
|
|
|
|||||||
|
|
() |
= { |
t, |
t E [0,1], |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
cp t |
0, |
t f/. [0,1]. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
Ee MO)J{HO 3anHcaTb TaK)J{e B BH).!.e cp(t) = t· X(t) - (t - |
l)X(t - |
1) - X(t - 1). |
|||||||||
|
|
|
|
|
1 |
|
-P |
|
|
-P |
|
Tor).!.a ee H306pIDKeHHeM 6y).!.eT <PYHKlI,HH cD(p) = 2" - |
~ - |
e p . cDYHKlI,HH |
|||||||||
|
|
|
|
|
P |
|
P |
|
|
|
|
f(t) MO)J{eT 6bITb npe).!.CTaBJIeHa B BH).!.e pH).!.a |
|
|
|
|
|
|
(Xl
f(t) = L cp(t - n), n=O
a ee H306pIDKeHHeM (no TeopeMe 3ana3).l.bIBaHHH OpHrHHaJIa) 6y).!.eT <PYHKlI,HH
(Xl |
|
|
|
|
|
|
|
|
|
|
F(p) = 2: e- pn . cD(p). ITOJIyqeHHbIil: pH).!. npe).!.CTaBJIHeT c060il: 6eCKOHeqHO |
||||||||||
n=O |
|
|
|
|
|
|
|
|
|
|
y6bIBaIOIIJ,yIO (npH p > 0) reOMeTpHqeCKYIO nporpeCCHIOj H nOTOMY |
|
|
) = |
|||||||
F(p) = <P(p)(1+e- +e- |
2p |
+ ... ) = |
cD(p~ = |
1 _ (l_ e- |
P |
_ |
e- |
p |
||
P |
|
1-e P 1-e P p2 |
|
|
|
|
||||
|
|
|
p2 |
|
P |
|
|
|
|
|
eP |
|
(1 - e- P - pe-P) |
eP - 1 - p |
• |
|
|
|
|
|
|
||||
|
|
|
eP - 1 . |
p2 |
p2 (eP - 1) . |
|
||
Hai1mu |
u306pa:»ee'H.'IJ.R nepuoou"tec'ICux rPY'H.'IC'4ui1: |
|
|
|||||
8.1.49. |
f(t) = Isin tl· |
|
|
|
|
|
|
|
8.1.50. |
cDYHKlI,HH f(t) |
3a).l.aHa rPa<PHKoM, KOTOPbIil: npHBe).!.eH Ha pHC. 114. |
||||||
8.1.51. |
cDYHKlI,HH f(t) |
3a).l.aHa rPa<PHKoM, KOTOPbIil: npHBe).!.eH Ha pHC. 115. |
||||||
8.1.52. |
Hail:TH H306pIDKeHHe <PYHKlI,HH f(t) = t2 sin t. |
|
|
|||||
a |
ITo Ta6JIHlI,e H306pIDKeHHil: HMeeM: |
|
|
|
||||
|
|
|
. |
t |
-tt |
1 |
|
|
|
|
|
sm |
|
- 2 -- . |
|
|
|
|
|
|
|
|
|
P + 1 |
|
|
494

f(t) |
-, |
, -, |
|
f(t)~ |
|
|
|||
|
, |
|
||
1 |
, |
, , |
, |
;~., |
, |
, , |
, |
||
, |
, , |
, |
|
|
|
|
|||
0 |
I', 2', |
3: 4' |
5: |
|
|
, , |
, |
|
|
-1 |
----~ |
|
|
|
|
Puc. |
114 |
|
Puc. 115 |
OTCIO)l;a no TeopeMe 0 )l;H<p<pepeHIJ;HpOBaHl1H H306pIDKeHHjI nOJIYQHM:
t2 sin t -;-t |
(+-)" |
|
|
|
||||
|
|
p |
+ |
1 |
|
|
|
|
HaxO)l;HM |
|
|
|
|
|
|
|
|
( |
|
1 |
) " |
|
( |
-~ |
~ -2 |
|
|
+ 1 |
|
(P2 |
+ 1)2 |
)'.....2 |
|||
|
p2 |
|
= |
|
- (p2 + 1)3· |
•
Hai1.mu u306pa~e'H'IJ.R tj)y'H'IC'IJ,ui1., ucno.l/,'b3Y.H. meope.My 0 autj)tj)epe'H'IJ,Up06a'HUU u306pa~e'H'IJ.R:
8.1.53. |
f(t) |
= t 2 cos2t. |
|
8.1.54. |
f(t) |
= t3 sin t. |
|
|
||||
8.1.55. |
f(t) |
= tsh3t. |
|
8.1.56. |
f(t) |
= t ch 2t. |
|
|
||||
8.1.57. |
f(t) |
= tet |
sin t. |
|
|
|
|
|
|
|
|
|
8.1.58. |
HanTH H306pIDKeHHe <PYHKIJ;HH f(t) |
1- et |
|
|
|
|||||||
= - t - . |
|
|
|
|||||||||
Q ITo Ta6JIHIJ;e H306pIDKeHHn Han)l;eM H306pIDKeHHe <PYHKIJ;HH |
|
|
||||||||||
|
|
|
cp(t) = 1 - |
et -;-t |
~ - |
|
p ~ 1. |
|
|
|
|
|
Tor)l;a no TeopeMe 06 HHTerpHpOBaHHH H306pIDKeHHjI HMeeM: |
|
|
||||||||||
f(t) = |
1 - et -;-t |
/00(1 __1_) dp = [lnp -In(p _ 1)]1 00 = |
|
|
||||||||
|
t |
|
p |
p-1 |
|
|
|
|
|
p |
|
|
|
|
|
p |
|
|
|
|
|
|
|
|
• |
|
|
|
= |
. |
P |
1M |
|
|
p |
p-1 |
||
|
|
|
hm In -- |
|
=O-ln-- =In--. |
|||||||
|
|
|
|
M -+00 |
P - 1 |
p |
|
|
p - |
1 |
P |
|
Hai1.mu |
u306pa~e'H'IJ.R c.lteaY70UJ,UX opW'lU'Ha.lt06: |
|
|
|
|
|||||||
8.1.59. |
f(t)=sint. |
|
8.1.60. |
f(t) = |
1 - cos t. |
|
||||||
|
|
t |
1 |
|
|
|
|
|
|
t |
|
|
|
|
2t |
|
|
|
|
f(t) = cos3t - |
cost. |
|
|||
8.1.61. |
f(t)=~. |
|
8.1.62. |
|
||||||||
|
|
|
t |
|
|
|||||||
|
|
|
t |
|
|
|
|
|
|
|
|
495

|
|
|
|
|
t |
|
|
|
8.1.63. |
HaiiTH H306pIDKeHHe <PYHKlI,HH f(t) = |
freT dr. |
|
|
||||
|
|
|
|
|
o |
|
|
|
Q MO:lKHO, BbI'IHCJIHBHHTerpaJI, HaiiTH H306pIDKeHHe IIO Ta6JIHlI,e H306pa- |
||||||||
:lKeHHii. O,l.l.HaKO IIpOlll,e B ,l.l.aHHOM CJIY'IaeBOCIIOJIb30BaTbCjI TeopeMoii 06 HH- |
||||||||
TerpHpOBaHHH OpHrHHaJIa. ,I1;eiicTBHTeJIbHO, HMeeM: tet -;+ |
1 2. |
Tor,l.l.a |
||||||
|
|
|
|
|
|
(p -1) |
|
|
IIO TeopeMe 06 HHTerpHpOBaHHH OpHrHHaJIa IIOJIY'IHM: |
|
|
||||||
|
t |
|
2: p = |
|
|
|
|
• |
|
f reT dr -;+ |
1 |
|
1 |
2. |
|
||
|
o |
(p - |
1) |
p(p - |
1) |
|
||
He 6bt"tUC.II.RJl UHmeZpaJl.bt, Hai1mu u306paJICeH'U.R |
cJl.eay'/Ow,ux fjjYHr;;u,ui1: |
|||||||
|
t |
|
|
|
t |
|
|
|
8.1.64. |
f r sin 2r dr. |
|
8.1.65. |
|
f r cos 3r dr. |
|
|
|
|
o |
|
|
|
o |
|
|
|
|
t |
|
|
|
t |
|
|
|
8.1.66. |
f r 2e2T dr. |
|
8.1.67. |
|
frcos 2rdr. |
|
|
|
|
o |
|
|
|
o |
|
|
|
|
t |
|
|
|
|
|
|
|
8.1.68.freTsin2rdr.
o
8.1.69. |
f(t) |
= 1. _ 2t. |
8.1.70. |
f(t) |
= et sin 2t cos 4t. |
|
|
f(t) |
5t |
3t |
|
f(t) |
= e-t sin2 t. |
8.1.71. |
= te2tcos3t. |
8.1.72. |
8.1.73.f(t) = tX(t - 1). 8.1.74. f(t) = sin(2t - 4)x(t - 2).
8.1.75.f(t) = t2cost.
8.1.77.f(t) = t34t .
8.1.79. |
f(t) = et |
- e2t |
|
|
t |
t
8.1.76.f(t) = t2sh 2t.
8.1.78. f(t) = sin 3t - sin t t
t
8.1.80.f(t) = frsin22rdr.
o
t
8.1.81. |
f(t) = f r3 eTdr. |
|
8.1.82. |
f(t) = f re3T cos4rdr. |
|
|
|
o |
|
|
o |
|
|
I, |
tE[O,I], |
|
|
8.1.83. |
f(t) |
= { 2 - t, |
t |
E (1,2], |
|
|
|
0, |
t |
~ [0,2]. |
|
Hai1mu u306paJICeH'U.R nepuoau"tecr;;ux fjjYHr;;u,ui1: |
|
||||
8.1.84. |
f(t) |
= Icostl· |
|
8.1.85. |
f(t) = arcsin(sin t). |
496
(Xl
8.1.86.f(t) = L: (-1)n . X(t - n).
n=O
8.1.87.f(t) - rrepMo,n;MqeCKaJI <PYHKU:MjI C rrepMo,n;oM T = 1 M Ha rrpOMe-
:lKYTKe [0,1) 3a,n;aHHaJI paBeHCTBOM f(t) = t2 •
60nee CnO)KHble 3aAa'"lM
8.1.88. |
MO:lKeT JIM <PYHKU:MjI F(p) = ~ 6bITb M306pa:lKeHMeM HeKOTOpO- |
||||
|
I'DOpMrMHaJIa? |
|
|
sm p |
|
8.1.89. ECJIM f(t) |
- OpMrHHaJI, TO 6y,n;eT JIM OPMrHHaJIOM <PYHKU:MjI: |
||||
|
1) !t f(t) dt; |
|
|
2) f'(t). |
|
|
o |
M g(t) - |
|
|
|
8.1.90. |
ECJIM f(t) |
OpMrHHaJIbI, TO jlBJIjleTCjI JIM OpMrMHaJIOM |
|||
|
<PYHKU:MjI |
f(t)g(t)? |
|
|
|
8.1.91. |
nOKa3aTb, 'ITOeCJIM f(t) - |
rrepMo,n;MqeCKajl <PYHKU:MjI, jlBJIjlIOru;aJI- |
|||
|
CjI OPMrHHaJIOM, TO ee M306pa:lKeHMe F(p) orrpe,n;eJIeHO B rrOJIyrrJIOC- |
||||
|
KOCTM Re p > O. |
|
|
|
|
8.1.92. |
,I1;oKa3aTb, 'ITOeCJIM f(t) |
-tt |
F(p), TO |
||
|
f(t)x(t - s) |
-tt |
F(p) - !s f(t)e- pt dt. |
||
|
|
|
|
|
o |
§ 2. CSEPTKA cnYHKLJ.lJIl4. OTblCKAHlJIE OPlJIrlJlHAnA no lJI306PA>KEHlJIlO
~ Csepm'ICo1:1 <PYHKIJ;Hit f(t) H g(t) (o603Ha'leHHef(t)*g(t)) Ha3bIBaeTCH <PYHKIJ;HH
t
!f(r)g(t-r)dr. o
OrrepaIJ;HH CBepTbIBaHHH <PYHKIJ;Hit 06JIa.n;aeT CBOitCTBOM KOMMYTaTHBHOCTH:
f(t) * g(t) = g(t) * f(t), T. e. |
!t |
f(r)g(t - |
r) dr = !t g(r)f(t - r) dr. |
|
|
|
o |
|
0 |
TeopeMa 8.10 (06 YMHO)KeHlo1Io1 111306pa)KeHIII~. IIInlll TeopeMa 0 cBepTKe). |
||||
nycTb f(t) |
III g(t) - oplllrlllHallbJ, a |
F(P) III G(p), COOTBeTCTBeHHO, IIIX 111306pa)l(e- |
||
HIII~. TorAa |
f(t) *g(t) -tt F(P)· G(p). |
|
|
TaKHM 06Pa30M, u306pa':JICe'H,'ue csepm'ICu iJsyx opUZU'HaJlOS ecm'b npou3seiJe'HUe ux u306pa':JICe'Hu1:1.
497

OTblCKaHMe opMrMHal10B no M306pa)l(eHMHM
AnH HaXOJK,n;eHHH OpHrHHaJIOB rro 3a,n;aHHbIM H306paJKeHHHM MOJKHO HCrrOJIb30-
BaTb HeCKOJIbKO rrpHeMOB.
Q(P)
JIepa'bttt COCTOHT B TOM, 'ITOH306paJKeHHe R(P) rrpe,n;CTaBJIHeTCH B BH,n;e CYM-
MbI ,meMeHTapHbIX ,n;p06efi, HBJIHIOm;HXCH H306paJKeHHHMH rrpocTbIx OPHrHHaJIOB. nOCJIe '1ero,HCrrOJIb3YH Ta6JIH~ OpHrHHaJIOB H CBoficTBO JIHHefiHOCTH rrpe06pa3Q-
BaHHH JIarrJIaca, Haxo,n;HT OpHrHHaJI, COOTBeTcTByIOm;Hfi HCXO,n;HOfi ,n;P06H.
Bmopott crroc06 COCTOHT B TOM, 'ITO,n;p06b rrpe,n;CTaBJIHeTCH B BH,n;e rrpoH3Be-
,n;eHHH ,n;p06efi, HBJIHIOm;HXCH H306paJKeHHHMH HeKOTopbIX <PYHKIJ;Hfi, rrOCJIe '1ero rrpHMeHHeTCH TeopeMa 0 cBepTKe.
Tpemutt crroc06 OCHOBaH Ha CJIe.n;yIOm;efi TeopeMe (rrpHBe,n;eM ee B HeCKOJIbKO
oCJIa6JIeHHOM BapHaHTe):
TeopeMa 8.11 (0 pa3110)l(eHI>11>17). |
|
Q(P) |
nYCTb q,YHKl.4l11l1 |
F(P) = R(p) npeACTaBlllleT |
|
c060iii npaBIIIIlbHYIO pal.4l11OHallbHYIO |
AP06b, IIIMelOllIYIO nOlllOCbl B TO'iKaXPko rAe |
|
k = 1,2, ... , n. TorAa oplllrlllHallOM |
Allll Hee CIlY)I(IIIT |
q,YHKl.4l11l1 |
rAe CYMMa 6epeTClI no BceM nOlllOcaM.
8.2.1. |
HaitTH OpHrHHa.JIbI CJIe.rr.yIOIIIHX H306pIDKeHHii: |
|
||||||||
|
|
|
|
7 |
|
|
|
|
4 |
3 |
|
a) F(p) = p3; |
|
|
6) F(p) = (p+ 1)4 |
(p-1)2; |
|||||
|
|
|
|
4 |
|
|
|
|
3p-1 |
|
|
B) F(p) = p2 _ 6p + 13; |
|
|
r) F (p) = p2 + 4p + 29 ; |
||||||
|
) |
F( |
) - |
e-P |
|
|
|
|
|
|
|
.n. |
p |
- |
(p _ 2)3 |
|
|
|
|
|
|
a a) ITo Ta6JIHIle H306pIDKeHHii HMeeM: t |
2 |
-7t |
2' |
2 |
|
|||||
|
-t = |
3"'IT09TOMY, IIpe06pa- |
||||||||
|
|
|
|
|
|
|
|
p |
p |
|
3YH F(p), IIOJIY'IHM ~ = ~. 23 , OTCIO,lla IIO CBoiicTBY JIHHeiiHOcTH IIpe06pa- |
||||||||||
|
|
|
p |
p |
|
|
|
|
|
|
30BaHHH JIaIIJIaca HaXO,llHM OpHrHHa.JI ,llJIH F (p): ~ = ~. 23 +;- |
~t2 • |
|||||||||
|
|
|
|
|
|
|
|
P |
P |
|
6) ITpe06pa3yeM F(p) TaKHM 06pa30M, 'IT06bIMO:JKHO 6blJI0 BOCIIOJIb30- |
||||||||||
BaTbCH Ta6JIHIIeii H306pIDKeHHii: |
|
|
|
|
|
|
||||
|
|
4 |
3 |
4 |
|
3! |
_ 3. |
1 |
|
|
|
|
|
|
(p_ 1)2 |
3i'(p+ 1)4 |
(p_1)2 |
|
73a'lacTYIO9TY TeopeMY Ha3blBaIOT TaKJKe 6mopoit meope.Moit pa3J1OO1CeHUJI (noCKOJIbKY eCTb ew;e H nepBaH TeopeMa pa3JIOJKeHHH).
498

<l>YHKIJ;HH |
3! 4 HBJIHeTCH H306pIDKeHHeM OpHrHHa.rra e-t ·t3 , a (p 1 )2 |
|||
|
|
(p+1) |
|
-1 |
H306pIDKeHHeM opHrHHa.rra et |
. t. TaKHM 06pa30M, OKOHqaTeJIbHO HMeeM: |
|||
|
|
|
F(p) +;- ~e-t. t 3 - 3et . t. |
|
B) IIpe06pa3yeM ,n;P06b, BbI,n;eJIHB nOJIHblft KBa.n;paT B 3HaMeHaTeJIe: |
||||
F( |
) - |
4 |
(p - |
4 |
p |
- |
p2 _ 6p+ 13 |
3)2 + 4 |
IIOCJIe,n;HHH ,n;P06b HBJIHeTCH H306pIDKeHHeM <PYHKIJ;HH e3t sin 2t. Tor,n;a no CBOftCTBY JIHHeftHocTH npe06pa30BaHHH JIanJIaca nOJIyqaeM
4 +;- 2e3t sin 2t.
(p - 3)2 + 4
r) ,LLeftcTByeM aHa.rrOrHqHO nyHKTy B):
3p -1 |
3p -1 |
F(p) = p2 +4p+29 - |
(p+2)2 +25· |
IIOKIDKeM, qTO nOCJIe,n;HHH ,n;p06b eCTb JIHHeftHM KOM6HHaIJ;HH H306pIDKeHHft <PYHKIJ;Hft e- 2t sin 5t H e- 2t cos 5t. ,LLeftcTBHTeJIbHO,
3p - |
1 |
3(p + 2) - 7 |
3(p + 2) |
7 |
|
|
--~~----= |
(p + 2)2 + 25 |
= --~~~-- |
(p + 2)2 + 25 |
|||
(p + 2)2 |
+ 25 |
(p + 2)2 |
+ 25 |
|||
|
|
|
=3. |
p+2 |
7 |
5 |
|
|
|
(p + 2)2 + 25 - 5" |
. (p + 2)2 + 25· |
CJIe,n;oBaTeJIbHO, COrJIaCHO Ta6JIHIJ;e H306pIDKeHHft H CBOftCTBY JIHHeftHocTH
npe06pa30BaHHH JIanJIaca, HaxO,n;HM opHrHHa.rr:
F(P) - 3· |
P + 2 |
_ 1 . |
5 |
+ 25 |
+;- 3e-2t cos 5t - l e- 2t sin 5t. |
- |
(p + 2)2 + 25 |
5 |
(p + 2)2 |
5 |
)I.) IIo Ta6JIHIJ;e H306pIDKeHHft Haxo,n;HM CHaqa.rra OpHrHHa.rr f(t) ,n;JIH
<PYHKIJ;HH (p-1 |
2) |
3 . A HMeHHO: |
|
|
|
1 |
|
IIpHMeHHB TeopeMY 3ana3,n;bIBaHHH opHrHHa.rra, HMeeM: |
|||
|
e-P +;- f(t - |
1) = le2 (t-I)(t - 1)2X(t - 1). |
|
(p- 2)3 |
2 |
(HanoMHHaeM, qTO no,n; <PYHKIJ;Heft ~e2tt2 MbI nOHHMaeM <PYHKIJ;HIO
~e2tt2x(t». •
499