Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Сборник задач по высшей математике 2 том

.pdf
Скачиваний:
68
Добавлен:
15.03.2015
Размер:
27.38 Mб
Скачать

8.1.1.

IIpOBepHTb, KaIme H3 CJIe.rr.yIOIIl;HX cPYHKD;Hii jlBJIjllOTCjI OpHrHHa-

 

JIaMH, a KaKHe -

HeT.

 

= t.X(t);

 

a) f(t)

= 2e3t • cos 2t . X(t);

6) f(t)

 

 

 

 

 

O'

t < 0,

 

B) f(t)

= e t2 . X(t);

r) f(t)

= { 1,

°~ t < 2,

 

 

 

 

 

t,

t ~ 2.

a a) YCJIOBHe 1 B orrpe.n;eJIeHHH OpHrHHaJIa, OqeBH.n;HO, BbIIIOJIHeHO. ,il;aJIee,

rrpH t ~

°cPYHKD;HjI f(t) -

HerrpepbIBHa, a CJIe.n;OBaTeJIbHO H a6COJIIOTHO

HHTerpHpyeMa Ha JII060M oTpe3Ke [0, a]. 3HaqHT, YCJIOBHe 2 TaK)J(e BbIIIOJIHjIeTCjI. HaKoHeD;, 12e3t cos 2tl ~ 2e3t , H B KaqeCTBe KOHCTaHT M H S B YCJIOBHH

3 orrpe.n;eJIeHHjI OpHrHHaJIa MO)J(HO BbI6paTb JII060e M > 2 H S = 3. CJIe.n;oBaTeJIbHO, f (t) jlBJIjleTCjI 0pHrHHaJIOM.

6) f(t) He jlBJIjleTCjI OpHrHHaJIOM, rrOCKOJIbKY HHTerpaJI

a

o/t dt

pacXO.n;HTCjI, a CJIe.n;OBaTeJIbHO, He BbIrrOJIHeHO YCJIOBHe 2 orrpe.n;eJIeHHjI OPHrHHaJIa.

B) f(t) He jlBJIjleTCjI OPHrHHaJIOM, rrOCKOJIbKY HepaBeHCTBO e t2

< Me st

He MO)J(eT BbIIIOJIHjlTbCjI HH rrpH KaKHX S .n;JIjI Bcex t > 0, T. K.

 

lim _e

t 2

1

 

 

= lim _et(t-s) = 00.

 

t-too M est

t-too M

 

OTclO.n;a CJIe.rr.yeT, 'ITO.n;JIjI JII06oro S BbIIIOJIHeHO HepaBeHCTBO e t2

> M est,

HaqHHaji C HeKOToporo 3HaqeHHjI t (HHbIMH CJIOBaMH, cPYHKD;HjI et2 paCTeT 6bICTpee JII060ii cPYHKD;HH M est). °

r) YCJIOBHe 1, OqeBH.n;HO, BbIrrOJIHeHO. IIPH t ~ cPYHKD;HjI HerrpepbIBHa

BCIO.rr.y, KpOMe TOqKH t = 1, B KOTOpoii OHa HMeeT pa3pbIB 1-ro po.n;a. CJIe.n;o-

BaTeJIbHO, f(t)

- HHTerpHPyeMa Ha JII060M OTpe3Ke [0, a].

T. K. If(t)1

~ et ,

TO H YCJIOBHe 3 TO)J(e BbIIIOJIHeHO. CJIe.n;oBaTeJIbHO, f(t) -

OpHrHHaJI.

8.1.2.

f(t)

= 3t . X(t).

8.1.3.

f(t)

= t 3 . X(t).

 

8.1.4.

f(t)

= e it . X(t).

8.1.5.

f(t)

= e-t2 . X(t).

 

8.1.6.

f(t)

= (t _1 1)2 • X(t).

8.1.7.

f(t)

=In t . X(t).

 

8.1.8.

f(t)

= tgt· X(t).

8.1.9.

f(t)

= e(2+i)t . X(t - 1).

8.1.10.

f(t)

= sin X(t + 1).

8.1.11.

f(t)

= t.X(t - 1).

 

8.1.12.

f(t)

= e it2 . X(t).

8.1.13.

f(t)

= 2 V't+t4 . X(t).

 

B .n;aJIbHeiillIeM BMecTO f(t)· X(t) MbI, KaK rrpaBHJIO, 6y.n;eM rrpOCTO rrHcaTb

f(t). '

490

8.1.14.HaiiTH H306proKeHHe <PYHKlI,HH f(t) = e(3+i)t, HCrrOJIb3YH rrpe06pa-

30BaHHe JIarrJIaca.

a f(t) HBJIHeTCH 0PHrHHaJIOM. TaK KaK le(3+i)tl < Me 3t .II.JlH M > 1, TO

H306proKeHHe F(P) 9TOii <PYHKlI,HH 6y.n;eT orrpe.n;eJIeHO H aHaJIHTHqHO B rrOJIYrrJIOCKOCTH Re p > 3. )J;aJIee, HaxO.n;HM

f(t)

-;-t

F(p) = !00e(3+i)t e -pt dt =

!00e-(p-3-1)t dt =

 

 

 

 

 

 

 

o

 

 

0

 

 

 

 

 

 

 

 

 

 

 

_

r

1

_(P_3_i)tI K

_

 

1

 

 

 

 

-

- K~oo P -

(3 + i) e

 

0

- p -

 

(3 + i)"

 

Hmto

ucnO.l/,'b3Y.R. npeo6pa30eaHU.R. JIan.!taca,

Haftmu

u306paJICeHU.R. c.!teoy'lO-

~UX opUZUHa.!toe:

 

 

 

 

 

 

 

 

 

 

8.1.15.

f(t)

= 2.

 

 

 

8.1.16.

f(t)

= e2t

 

 

 

8.1.17.

f(t)

= cos4t.

 

 

8.1.18.

f(t)

= t.

 

 

 

 

 

f(t)

= {I,

t

E[0,1],

 

 

 

 

t,

t

E [0,1],

 

8.1.19.

 

8.1.20.

f(t)

= { 1,

t

E (1,2]'

 

 

 

 

0,

t

~ [0,1].

 

 

 

 

0,

t

~ [0,2].

 

 

 

 

 

 

 

 

 

 

 

 

8.1.21.f(t) = et . x(t - 1).

8.1.22.llcrroJIb3YH Ta6JIHIJ,y H306proKeHHii H CBoiicTBO JIHHeiiHOCTH rrpe-

06pa30BaHHH JIarrJIaca, HaiiTH H306proKeHHH CJIe.n;yIOIllHx opHrH-

HaJIOB:

= 2 + t3 + t cos 2t;

 

 

= 3t ;

a)

f(t)

6)

f(t)

B)

f(t)

= cos2 t; ,

 

r)

f(t)

= sin 2t cos3t;

)1;) f(t) = et +5.

 

 

 

 

a a) 110 Ta6JIHlI,e HaxO.n;HM:

 

 

 

 

1 -;-t

1

 

= ~ (III),

 

 

p2 -4

 

tcos2t-;-t (p2+4)2 (X).

P (I), t 3 -;-t 31

 

 

p

p

 

 

 

CJIe.n;OBaTeJIbHO, rro cBoiicTBY JIHHeiiHOcTH (TeopeMa 1) rrpe06pa30BaHHH JIa-

IIJIaca rrOJIyqHM: 2 + t3 + t cos 2t = 2 . 1 + t3 + t cos 2t

2

6

+

p2

4

-;-t p-

+ 4"

2

- 2.

6) 110CKOJIbKY 3t = et In 3, TO 3t -;-t

 

 

 

 

P

 

(P

+ 4)

1

 

(II).

 

 

 

 

 

 

 

p-ln3

 

 

 

 

 

 

B) llcrroJIb3YH H3BeCTHYIO TpHrOHOMeTpHqeCKYIO <P0PMYJIY rrOHIDKeHHH

CTerreHH, HMeeM:

 

 

 

 

 

 

 

 

 

2t _

1 + cos 2t

_ 1

1 + 1

2t

 

 

 

 

cos -

2

-2·

 

2 cos .

 

 

 

 

T. K. 1 -;-t p.! (I), a cos 2t -;-t

- p2 (VI), TO rro CBoiicTBY JIHHeiiHOCTH rrpe-

,

p +4

 

 

 

 

 

 

 

 

06pa30BaHHH JIarrJIaca rrOJIyqaeM: cos2 t -;-t

l

+

P

 

 

 

 

 

 

 

2p

2(p2 + 4)

 

 

 

491

r) ITpe06pa3yeM OpliTHHa.JI f (t): sin 2t cos 3t = ~(sin 5t - sin t). Tor).l.a,

HCrrOJIb3Yjl <P0PMYJIY V Ta6JIHIJ;bI H CBOftCTBO JIHHeftHocTH rrpeo6pa30BaHHjI

JIarrJIaca, rrOJIyqaeM: sin 2t cos 3t -;+

1

5 2

- ~).

 

-2 ( 2

 

 

 

 

 

p

+5

p

+1

 

)I.) T. K. et+5 = e5 et H et -;+ ~1 (II),

TO et+5 = e5 ~1.

 

 

 

p-

 

 

 

p-

 

HcnO.!I:b3Y.R. ma6.1/,u'4Y u306pa;)tCe'Hui:i, 'Hai:imu u306pa;)tCe'HU.R. opUZU'Ha.l/,06:

8.1.23.

f(t) = 3e-t

+ et cos 3t.

8.1.24.

f(t)

= 4sh2t - t2

 

 

 

 

 

8.1.26.

 

1

 

8.1.25.

f(t)

= te2t -

sin 3t.

f(t)

= t2 + 1.

 

 

 

 

8.1.27.

f(t)

= tet - I

+ t2 et - 2

8.1.28.

f(t)

= sin3 t.

 

8.1.29.

f(t)

= cost cos 3t.

8.1.30.

f(t)

= sin 4t sin 2t -

t sin t.

8.1.31.f(t) = et cos2 t.

8.1.32.IIcrroJIb3Yjl TeopeMY H306pIDKeHHjI, HaftTH H306pIDKeHHe OpHrHHaJIa f(t) = e3t cht.

 

 

 

 

 

 

 

 

 

P

OTCIO).l.a

o ITo <popMYJIe XII Ta6JIHIJ;bI H306pIDKeHHft HMeeM: ch t -;+ - 2 -- .

rro TeopeMe CMew:eHHjI (Po = 3) rrOJIyqaeM:

 

 

p

-1

 

 

 

 

 

 

 

e3t cht -;+

 

p-3

 

 

 

 

 

(P - 3)

2

-1

 

 

Hai:imu u306pa;)tCe'HU.R. opUZU'Ha.l/,06, UCnO.l/,'b3Y.R. meope.M.y C.M.e~e'HU.R.:

 

8.1.33.

f(t)

= te2t cos 3t.

 

8.1.34.

f(t)

= e~ sh 2t.

 

 

8.1.35.

f(t)

= e4t cos2 t.

 

8.1.36.

f(t)

= te-t sin 2t.

 

8.1.37.

HaftTH H306pIDKeHHe <PYHKIJ;HH g(t) = cos(t - 2)x(t -

2).

 

o PaccMoTpHM <PYHKIJ;HIO f(t)

= cost· X(t). Tor).l.a

 

 

 

 

 

g(t) = f(t -

2) = cos(t -

2) . X(t - 2).

 

 

,I1;JIjI OpHrHHa.JIa f(t) HMeeM: f(t) -;+

.....2

P

(VI). Tor).l.a rro TeopeMe 3arra3-

 

 

 

 

p

+1

 

 

 

 

 

).l.bIBaHHjI OpHrHHa.JIa rrOJIyqHM: g(t) = f(t -

2) -;+ e-2P - p - .

 

 

 

 

 

 

 

 

p2 + 1

 

Hai:imu

u306pa;)tCe'Hue c.I/,eay'lO~ux fjJY'Hrt:'4ui:i:

 

 

 

 

8.1.38.

(t -

3)3 . X(t - 3).

 

8.1.39.

e2t -

4 X(t - 2).

 

8.1.40.ch(2t - 1) . X (t - ~).

8.1.41.(t - ~) sin(3t - 71") . X (t - ~).

8.1.42.HaftTH H306pIDKeHHjI <PYHKIJ;Hft, 3a).l.aHHbIX rpa<pHqeCKH:

a)rpa<pHK <PYHKIJ;HH f(t) rrpHBe).l.eH Ha pHC. 108;

6) rpa<PHK <PYHKIJ;HH f(t) rrpHBe).l.eH Ha pHC. 109.

o a) 1I306pIDKeHHe <PYHKIJ;HH f(t) MOlKHO, KOHeqHO, HaftTH HerrOCpe).l.CTBeHHO, rrpHMeHHB rrpe06pa30BaHHe JIarrJIaca. O).l.HaKO rrpow:e rrpe).l.CTaBHTb ee B

492

f(t)

 

 

 

f(t)

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

o

1

t

 

 

 

 

 

1

 

2

t

 

Puc. 108

 

 

 

 

 

 

Puc. 109

BH.n;e f(t) =

X(t) - X(t - 1).

110 Ta6JIHIJ;e

X(t)

-;+

~

(I). OTcIO.n;a rro Teo-

peMe 3arra3.n;bIBaHIUI OpHrHHana HMeeM X(t

-

1)

-;+

e-P

 

p' CJIe.n;oBaTeJIbHO,

1

e-P

 

 

 

 

 

 

 

 

 

 

f(t) -;+ p -

p;

 

 

 

 

 

 

 

 

 

 

6) I1pe.n;cTaBHM <PYHKII,HIO

f(t)

B BH.n;e:

 

 

 

 

 

 

 

 

f(t) = t . X(t)

- (t - 1) . X(t -

1) -

X(t - 2).

110 Ta6JIHIJ;e HaxO.n;HM g(t) = t'X(t)

-;+ --\- (III) H X(t)

-;+

~. ,I1;anee, comaCHO

 

 

 

 

p

 

 

 

 

 

 

 

TeopeMe 3arra3.n;bIBaHHH opHrHHana, rrOJIyqaeM:

 

 

 

 

 

g(t - 1) = (t - 1) . X(t - 1)

e-P

 

 

X(t -

2)

e- 2p

-;+ -p2

 

H

-;+ - p .

 

 

p

 

p

-2p

 

 

 

 

OKOHqaTeJIbHO HMeeM: f(t) -;+

1

 

-p

 

 

 

 

 

2" -

~ -

T'

 

 

 

Hai1mu u306paJICeHUJI opUaUHa.l!06, 3aaaHH'btX apatjju"tec'ICu:

8.1.43.rpa<PHK <PYHKIJ;HH f(t) rrpHBe.n;eH Ha pHC. 110.

f(t)

 

I

 

 

f(t)

 

 

I

 

 

 

 

 

I

 

 

 

 

 

I

 

 

 

 

1 -----!......--

 

1

 

 

I

I

 

 

 

 

I

I

 

 

 

 

I

I

 

 

 

 

I

I

 

 

 

o

I

I

 

 

 

1

2

t

2

t

 

Puc. 110

 

Puc. 111

 

8.1.44.rpa<PHK <PYHKIJ;HH f(t) rrpHBe.n;eH Ha pHC. 111.

8.1.45. f(t)

-_ {Sin t,

t E [0,11'], r nrh

rh

f(

t

)

rrpHBe.n;eH Ha

0,

PClA±'HK 'i'YHKIJ;HH

 

 

t ¢ [0,11'].

 

 

 

 

 

pHc.112.

 

 

 

 

 

 

493

f(t)

f(t)

 

 

 

 

 

t

 

 

2

 

 

t

 

Puc.

112

 

 

 

Puc. 113

 

 

 

8.1.46.

rpa<PHK <PYHKlI,HH f(t) npHBe).!.eH Ha pHC. 113.

 

 

 

 

 

 

 

 

 

 

 

 

 

(Xl

 

 

8.1.47.

Hail:TH H306pIDKeHlfe <PYHKlI,HH, 3a).l.aHHoil: PH).!.OM:

2: X(t -

n).

 

 

 

 

 

 

 

 

n=O

 

8.1.48.

Hail:TH H306pIDKeHHe nepHo).!.HqeCKoil: <PYHKlI,HH

f(t)

= {t}

(3).!.ecb

 

{t} - ).!.P06HM qacTb qHCJIa t).

 

 

 

 

 

 

a cDYHKlI,HH f(t) -

nepHO).!.HqeCKM C nepHo).!.oM T

= 1.

Ha oTpe3Ke [0,1]

OHa 3a).!.aeTCH paBeHCTBOM f(t)

= t. PacCMOTPHM <PYHKlI,HIO

 

 

 

 

 

()

= {

t,

t E [0,1],

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

cp t

0,

t f/. [0,1].

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ee MO)J{HO 3anHcaTb TaK)J{e B BH).!.e cp(t) = t· X(t) - (t -

l)X(t -

1) - X(t - 1).

 

 

 

 

 

1

 

-P

 

 

-P

 

Tor).!.a ee H306pIDKeHHeM 6y).!.eT <PYHKlI,HH cD(p) = 2" -

~ -

e p . cDYHKlI,HH

 

 

 

 

 

P

 

P

 

 

 

 

f(t) MO)J{eT 6bITb npe).!.CTaBJIeHa B BH).!.e pH).!.a

 

 

 

 

 

 

(Xl

f(t) = L cp(t - n), n=O

a ee H306pIDKeHHeM (no TeopeMe 3ana3).l.bIBaHHH OpHrHHaJIa) 6y).!.eT <PYHKlI,HH

(Xl

 

 

 

 

 

 

 

 

 

 

F(p) = 2: e- pn . cD(p). ITOJIyqeHHbIil: pH).!. npe).!.CTaBJIHeT c060il: 6eCKOHeqHO

n=O

 

 

 

 

 

 

 

 

 

 

y6bIBaIOIIJ,yIO (npH p > 0) reOMeTpHqeCKYIO nporpeCCHIOj H nOTOMY

 

 

) =

F(p) = <P(p)(1+e- +e-

2p

+ ... ) =

cD(p~ =

1 _ (l_ e-

P

_

e-

p

P

 

1-e P 1-e P p2

 

 

 

 

 

 

 

p2

 

P

 

 

 

 

 

eP

 

(1 - e- P - pe-P)

eP - 1 - p

 

 

 

 

 

 

 

 

eP - 1 .

p2

p2 (eP - 1) .

 

Hai1mu

u306pa:»ee'H.'IJ.R nepuoou"tec'ICux rPY'H.'IC'4ui1:

 

 

8.1.49.

f(t) = Isin tl·

 

 

 

 

 

 

8.1.50.

cDYHKlI,HH f(t)

3a).l.aHa rPa<PHKoM, KOTOPbIil: npHBe).!.eH Ha pHC. 114.

8.1.51.

cDYHKlI,HH f(t)

3a).l.aHa rPa<PHKoM, KOTOPbIil: npHBe).!.eH Ha pHC. 115.

8.1.52.

Hail:TH H306pIDKeHHe <PYHKlI,HH f(t) = t2 sin t.

 

 

a

ITo Ta6JIHlI,e H306pIDKeHHil: HMeeM:

 

 

 

 

 

 

.

t

-tt

1

 

 

 

 

 

sm

 

- 2 -- .

 

 

 

 

 

 

 

 

P + 1

 

 

494

f(t)

-,

, -,

 

f(t)~

 

 

 

,

 

1

,

, ,

,

;~.,

,

, ,

,

,

, ,

,

 

 

 

0

I', 2',

3: 4'

5:

 

 

, ,

,

 

 

-1

----~

 

 

 

 

Puc.

114

 

Puc. 115

OTCIO)l;a no TeopeMe 0 )l;H<p<pepeHIJ;HpOBaHl1H H306pIDKeHHjI nOJIYQHM:

t2 sin t -;-t

(+-)"

 

 

 

 

 

p

+

1

 

 

 

 

HaxO)l;HM

 

 

 

 

 

 

 

 

(

 

1

) "

 

(

-~

~ -2

 

+ 1

 

(P2

+ 1)2

)'.....2

 

p2

 

=

 

- (p2 + 1)3·

Hai1.mu u306pa~e'H'IJ.R tj)y'H'IC'IJ,ui1., ucno.l/,'b3Y.H. meope.My 0 autj)tj)epe'H'IJ,Up06a'HUU u306pa~e'H'IJ.R:

8.1.53.

f(t)

= t 2 cos2t.

 

8.1.54.

f(t)

= t3 sin t.

 

 

8.1.55.

f(t)

= tsh3t.

 

8.1.56.

f(t)

= t ch 2t.

 

 

8.1.57.

f(t)

= tet

sin t.

 

 

 

 

 

 

 

 

 

8.1.58.

HanTH H306pIDKeHHe <PYHKIJ;HH f(t)

1- et

 

 

 

= - t - .

 

 

 

Q ITo Ta6JIHIJ;e H306pIDKeHHn Han)l;eM H306pIDKeHHe <PYHKIJ;HH

 

 

 

 

 

cp(t) = 1 -

et -;-t

~ -

 

p ~ 1.

 

 

 

 

Tor)l;a no TeopeMe 06 HHTerpHpOBaHHH H306pIDKeHHjI HMeeM:

 

 

f(t) =

1 - et -;-t

/00(1 __1_) dp = [lnp -In(p _ 1)]1 00 =

 

 

 

t

 

p

p-1

 

 

 

 

 

p

 

 

 

 

 

p

 

 

 

 

 

 

 

 

 

 

 

=

.

P

1M

 

 

p

p-1

 

 

 

hm In --

 

=O-ln-- =In--.

 

 

 

 

M -+00

P - 1

p

 

 

p -

1

P

Hai1.mu

u306pa~e'H'IJ.R c.lteaY70UJ,UX opW'lU'Ha.lt06:

 

 

 

 

8.1.59.

f(t)=sint.

 

8.1.60.

f(t) =

1 - cos t.

 

 

 

t

1

 

 

 

 

 

 

t

 

 

 

 

2t

 

 

 

 

f(t) = cos3t -

cost.

 

8.1.61.

f(t)=~.

 

8.1.62.

 

 

 

 

t

 

 

 

 

 

t

 

 

 

 

 

 

 

 

495

 

 

 

 

 

t

 

 

 

8.1.63.

HaiiTH H306pIDKeHHe <PYHKlI,HH f(t) =

freT dr.

 

 

 

 

 

 

 

o

 

 

 

Q MO:lKHO, BbI'IHCJIHBHHTerpaJI, HaiiTH H306pIDKeHHe IIO Ta6JIHlI,e H306pa-

:lKeHHii. O,l.l.HaKO IIpOlll,e B ,l.l.aHHOM CJIY'IaeBOCIIOJIb30BaTbCjI TeopeMoii 06 HH-

TerpHpOBaHHH OpHrHHaJIa. ,I1;eiicTBHTeJIbHO, HMeeM: tet -;+

1 2.

Tor,l.l.a

 

 

 

 

 

 

(p -1)

 

IIO TeopeMe 06 HHTerpHpOBaHHH OpHrHHaJIa IIOJIY'IHM:

 

 

 

t

 

2: p =

 

 

 

 

 

f reT dr -;+

1

 

1

2.

 

 

o

(p -

1)

p(p -

1)

 

He 6bt"tUC.II.RJl UHmeZpaJl.bt, Hai1mu u306paJICeH'U.R

cJl.eay'/Ow,ux fjjYHr;;u,ui1:

 

t

 

 

 

t

 

 

 

8.1.64.

f r sin 2r dr.

 

8.1.65.

 

f r cos 3r dr.

 

 

 

o

 

 

 

o

 

 

 

 

t

 

 

 

t

 

 

 

8.1.66.

f r 2e2T dr.

 

8.1.67.

 

frcos 2rdr.

 

 

 

o

 

 

 

o

 

 

 

 

t

 

 

 

 

 

 

 

8.1.68.freTsin2rdr.

o

8.1.69.

f(t)

= 1. _ 2t.

8.1.70.

f(t)

= et sin 2t cos 4t.

 

f(t)

5t

3t

 

f(t)

= e-t sin2 t.

8.1.71.

= te2tcos3t.

8.1.72.

8.1.73.f(t) = tX(t - 1). 8.1.74. f(t) = sin(2t - 4)x(t - 2).

8.1.75.f(t) = t2cost.

8.1.77.f(t) = t34t .

8.1.79.

f(t) = et

- e2t

 

 

t

t

8.1.76.f(t) = t2sh 2t.

8.1.78. f(t) = sin 3t - sin t t

t

8.1.80.f(t) = frsin22rdr.

o

t

8.1.81.

f(t) = f r3 eTdr.

 

8.1.82.

f(t) = f re3T cos4rdr.

 

 

o

 

 

o

 

 

I,

tE[O,I],

 

8.1.83.

f(t)

= { 2 - t,

t

E (1,2],

 

 

 

0,

t

~ [0,2].

 

Hai1mu u306paJICeH'U.R nepuoau"tecr;;ux fjjYHr;;u,ui1:

 

8.1.84.

f(t)

= Icostl·

 

8.1.85.

f(t) = arcsin(sin t).

496

(Xl

8.1.86.f(t) = L: (-1)n . X(t - n).

n=O

8.1.87.f(t) - rrepMo,n;MqeCKaJI <PYHKU:MjI C rrepMo,n;oM T = 1 M Ha rrpOMe-

:lKYTKe [0,1) 3a,n;aHHaJI paBeHCTBOM f(t) = t2

60nee CnO)KHble 3aAa'"lM

8.1.88.

MO:lKeT JIM <PYHKU:MjI F(p) = ~ 6bITb M306pa:lKeHMeM HeKOTOpO-

 

I'DOpMrMHaJIa?

 

 

sm p

8.1.89. ECJIM f(t)

- OpMrHHaJI, TO 6y,n;eT JIM OPMrHHaJIOM <PYHKU:MjI:

 

1) !t f(t) dt;

 

 

2) f'(t).

 

o

M g(t) -

 

 

 

8.1.90.

ECJIM f(t)

OpMrHHaJIbI, TO jlBJIjleTCjI JIM OpMrMHaJIOM

 

<PYHKU:MjI

f(t)g(t)?

 

 

 

8.1.91.

nOKa3aTb, 'ITOeCJIM f(t) -

rrepMo,n;MqeCKajl <PYHKU:MjI, jlBJIjlIOru;aJI-

 

CjI OPMrHHaJIOM, TO ee M306pa:lKeHMe F(p) orrpe,n;eJIeHO B rrOJIyrrJIOC-

 

KOCTM Re p > O.

 

 

 

8.1.92.

,I1;oKa3aTb, 'ITOeCJIM f(t)

-tt

F(p), TO

 

f(t)x(t - s)

-tt

F(p) - !s f(t)e- pt dt.

 

 

 

 

 

o

§ 2. CSEPTKA cnYHKLJ.lJIl4. OTblCKAHlJIE OPlJIrlJlHAnA no lJI306PA>KEHlJIlO

~ Csepm'ICo1:1 <PYHKIJ;Hit f(t) H g(t) (o603Ha'leHHef(t)*g(t)) Ha3bIBaeTCH <PYHKIJ;HH

t

!f(r)g(t-r)dr. o

OrrepaIJ;HH CBepTbIBaHHH <PYHKIJ;Hit 06JIa.n;aeT CBOitCTBOM KOMMYTaTHBHOCTH:

f(t) * g(t) = g(t) * f(t), T. e.

!t

f(r)g(t -

r) dr = !t g(r)f(t - r) dr.

 

 

o

 

0

TeopeMa 8.10 (06 YMHO)KeHlo1Io1 111306pa)KeHIII~. IIInlll TeopeMa 0 cBepTKe).

nycTb f(t)

III g(t) - oplllrlllHallbJ, a

F(P) III G(p), COOTBeTCTBeHHO, IIIX 111306pa)l(e-

HIII~. TorAa

f(t) *g(t) -tt F(P)· G(p).

 

 

TaKHM 06Pa30M, u306pa':JICe'H,'ue csepm'ICu iJsyx opUZU'HaJlOS ecm'b npou3seiJe'HUe ux u306pa':JICe'Hu1:1.

497

OTblCKaHMe opMrMHal10B no M306pa)l(eHMHM

AnH HaXOJK,n;eHHH OpHrHHaJIOB rro 3a,n;aHHbIM H306paJKeHHHM MOJKHO HCrrOJIb30-

BaTb HeCKOJIbKO rrpHeMOB.

Q(P)

JIepa'bttt COCTOHT B TOM, 'ITOH306paJKeHHe R(P) rrpe,n;CTaBJIHeTCH B BH,n;e CYM-

MbI ,meMeHTapHbIX ,n;p06efi, HBJIHIOm;HXCH H306paJKeHHHMH rrpocTbIx OPHrHHaJIOB. nOCJIe '1ero,HCrrOJIb3YH Ta6JIH~ OpHrHHaJIOB H CBoficTBO JIHHefiHOCTH rrpe06pa3Q-

BaHHH JIarrJIaca, Haxo,n;HT OpHrHHaJI, COOTBeTcTByIOm;Hfi HCXO,n;HOfi ,n;P06H.

Bmopott crroc06 COCTOHT B TOM, 'ITO,n;p06b rrpe,n;CTaBJIHeTCH B BH,n;e rrpoH3Be-

,n;eHHH ,n;p06efi, HBJIHIOm;HXCH H306paJKeHHHMH HeKOTopbIX <PYHKIJ;Hfi, rrOCJIe '1ero rrpHMeHHeTCH TeopeMa 0 cBepTKe.

Tpemutt crroc06 OCHOBaH Ha CJIe.n;yIOm;efi TeopeMe (rrpHBe,n;eM ee B HeCKOJIbKO

oCJIa6JIeHHOM BapHaHTe):

TeopeMa 8.11 (0 pa3110)l(eHI>11>17).

 

Q(P)

nYCTb q,YHKl.4l11l1

F(P) = R(p) npeACTaBlllleT

c060iii npaBIIIIlbHYIO pal.4l11OHallbHYIO

AP06b, IIIMelOllIYIO nOlllOCbl B TO'iKaXPko rAe

k = 1,2, ... , n. TorAa oplllrlllHallOM

Allll Hee CIlY)I(IIIT

q,YHKl.4l11l1

rAe CYMMa 6epeTClI no BceM nOlllOcaM.

8.2.1.

HaitTH OpHrHHa.JIbI CJIe.rr.yIOIIIHX H306pIDKeHHii:

 

 

 

 

 

7

 

 

 

 

4

3

 

a) F(p) = p3;

 

 

6) F(p) = (p+ 1)4

(p-1)2;

 

 

 

 

4

 

 

 

 

3p-1

 

 

B) F(p) = p2 _ 6p + 13;

 

 

r) F (p) = p2 + 4p + 29 ;

 

)

F(

) -

e-P

 

 

 

 

 

 

 

.n.

p

-

(p _ 2)3

 

 

 

 

 

 

a a) ITo Ta6JIHIle H306pIDKeHHii HMeeM: t

2

-7t

2'

2

 

 

-t =

3"'IT09TOMY, IIpe06pa-

 

 

 

 

 

 

 

 

p

p

 

3YH F(p), IIOJIY'IHM ~ = ~. 23 , OTCIO,lla IIO CBoiicTBY JIHHeiiHOcTH IIpe06pa-

 

 

 

p

p

 

 

 

 

 

 

30BaHHH JIaIIJIaca HaXO,llHM OpHrHHa.JI ,llJIH F (p): ~ = ~. 23 +;-

~t2

 

 

 

 

 

 

 

 

P

P

 

6) ITpe06pa3yeM F(p) TaKHM 06pa30M, 'IT06bIMO:JKHO 6blJI0 BOCIIOJIb30-

BaTbCH Ta6JIHIIeii H306pIDKeHHii:

 

 

 

 

 

 

 

 

4

3

4

 

3!

_ 3.

1

 

 

 

 

 

(p_ 1)2

3i'(p+ 1)4

(p_1)2

 

73a'lacTYIO9TY TeopeMY Ha3blBaIOT TaKJKe 6mopoit meope.Moit pa3J1OO1CeHUJI (noCKOJIbKY eCTb ew;e H nepBaH TeopeMa pa3JIOJKeHHH).

498

<l>YHKIJ;HH

3! 4 HBJIHeTCH H306pIDKeHHeM OpHrHHa.rra e-t ·t3 , a (p 1 )2

 

 

(p+1)

 

-1

H306pIDKeHHeM opHrHHa.rra et

. t. TaKHM 06pa30M, OKOHqaTeJIbHO HMeeM:

 

 

 

F(p) +;- ~e-t. t 3 - 3et . t.

B) IIpe06pa3yeM ,n;P06b, BbI,n;eJIHB nOJIHblft KBa.n;paT B 3HaMeHaTeJIe:

F(

) -

4

(p -

4

p

-

p2 _ 6p+ 13

3)2 + 4

IIOCJIe,n;HHH ,n;P06b HBJIHeTCH H306pIDKeHHeM <PYHKIJ;HH e3t sin 2t. Tor,n;a no CBOftCTBY JIHHeftHocTH npe06pa30BaHHH JIanJIaca nOJIyqaeM

4 +;- 2e3t sin 2t.

(p - 3)2 + 4

r) ,LLeftcTByeM aHa.rrOrHqHO nyHKTy B):

3p -1

3p -1

F(p) = p2 +4p+29 -

(p+2)2 +25·

IIOKIDKeM, qTO nOCJIe,n;HHH ,n;p06b eCTb JIHHeftHM KOM6HHaIJ;HH H306pIDKeHHft <PYHKIJ;Hft e- 2t sin 5t H e- 2t cos 5t. ,LLeftcTBHTeJIbHO,

3p -

1

3(p + 2) - 7

3(p + 2)

7

 

--~~----=

(p + 2)2 + 25

= --~~~--

(p + 2)2 + 25

(p + 2)2

+ 25

(p + 2)2

+ 25

 

 

 

=3.

p+2

7

5

 

 

 

(p + 2)2 + 25 - 5"

. (p + 2)2 + 25·

CJIe,n;oBaTeJIbHO, COrJIaCHO Ta6JIHIJ;e H306pIDKeHHft H CBOftCTBY JIHHeftHocTH

npe06pa30BaHHH JIanJIaca, HaxO,n;HM opHrHHa.rr:

F(P) -

P + 2

_ 1 .

5

+ 25

+;- 3e-2t cos 5t - l e- 2t sin 5t.

-

(p + 2)2 + 25

5

(p + 2)2

5

)I.) IIo Ta6JIHIJ;e H306pIDKeHHft Haxo,n;HM CHaqa.rra OpHrHHa.rr f(t) ,n;JIH

<PYHKIJ;HH (p-1

2)

3 . A HMeHHO:

 

 

 

1

 

IIpHMeHHB TeopeMY 3ana3,n;bIBaHHH opHrHHa.rra, HMeeM:

 

e-P +;- f(t -

1) = le2 (t-I)(t - 1)2X(t - 1).

(p- 2)3

2

(HanoMHHaeM, qTO no,n; <PYHKIJ;Heft ~e2tt2 MbI nOHHMaeM <PYHKIJ;HIO

~e2tt2x(t».

499

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]