Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Сборник задач по высшей математике 2 том

.pdf
Скачиваний:
68
Добавлен:
15.03.2015
Размер:
27.38 Mб
Скачать
o. TaK

yrrpOrn;aH 9TO BbIpaJKeHMe, rrOJIy'lMM

 

2

 

 

2(3 + 4i)

 

 

6 + 8i

 

6 + 8i

 

 

 

 

 

 

3 -

4i

= ..,------..,-----'--

 

 

 

 

 

 

 

 

 

 

(3 - 4i)(3

+ 4i)

 

 

9 + 16

 

25·

 

 

 

 

 

 

2

 

=

6 + 8i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IITaK, res.f(z) = - 34·

- 25 .

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-2t

 

- Z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Haft,l1.eM BbI'IeTB TO'lKe1, 3arrMcaB <PYHKIIMIO fez)

B BM,l1.e

 

 

 

 

 

 

 

 

 

z+l

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

fez) =

~((zz))

 

=

(z + 2i)2

' r,l1.e

¢

(

1

)

= 0,

¢

I(

z

)

=

...J.

 

 

 

 

 

 

'f'

 

 

Z _ 1

 

 

 

 

1 ;- 0,

 

 

TOr,l1.a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

z+l

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

resf(z) =

cp(z)

 

=

(z + 2i)21

 

 

z + 1

 

 

 

 

 

 

 

 

 

."/( )

z=l

 

1

z=l -

 

(z + 2i)2

z=l

-

 

 

 

 

 

 

1

'f'Z

 

 

 

 

 

 

 

6 + 8i

 

 

 

 

 

 

 

=

 

 

 

2

=

 

 

2

 

=

 

 

 

 

 

 

 

(1 + 2i)2

-3 + 4i

-25·

Haft,l1.eM BbI'IeTB 6eCKOHe'lHOy,l1.aJIeHHoft TO'lKe:

 

 

 

 

 

 

 

 

r!sf (z) = - (~~~f(z) + r?sf(z))

 

 

 

 

6+8i

 

 

6+8i)

= o.

= - ( 25 - 25

 

7.5.2. HaftTM BbI'IeTbI<PYHKIIMM fez) = si~z BO Bcex OC06bIX TO'lKaX, orrpe,l1.eJIMTb MX TMrr, HaiiTM BbI'IeTB 6eCKOHe'lHOY,l1.aJIeHHoft TO'lKe.

a Oco6oft TO'lKOft,l1.aHHoft <PYHKIIMM, O'leBM,l1.HO,.HBJI.HeTC.H TO'lKaz =

KaK cyrn;ecTByeT KOHe'lHbIftrrpe,l1.eJI

lim f (z) =

lim si~z = 1 (1-ft 3aMe'laTeJIbHbIftrrpe,l1.eJI),

z-+zo

z-+zo

TO 0 - YCTpaHMMaH oco6aH TO'lKaM, 3Ha'lMT,

resf(z) = O. o

OTCIO,l1.a B CMJIY TeopeMbI 7.4 rrOJIy'lMM

resf(z) = -resf(z) = o.

 

 

00

 

0

 

 

 

7.5.3.

 

 

 

 

 

 

 

 

HaftTM BbI'IeTbI<PYHKIIMM

 

 

 

 

 

 

 

 

fez) =

cosz

 

 

 

 

 

 

(2z -

11")2

 

 

 

 

 

BO Bcex OC06bIX TO'lKax,orrpe,l1.eJIMTb MX TMrr, HaftTM BbI'IeTB oec-

 

 

KOHe'lHOy,l1.aJIeHHoft TO'lKe.

 

 

 

 

 

a Oco6oft TO'lKOft,l1.aHHoft <PYHKIIMM,

O'leBM,l1.HO, .HBJI.HeTC.H TO'lKaz

- ~.

TaKKaK

 

 

 

 

 

 

 

l-+im_7r

[fez) (z - 7£2)2] = lim

cosz

. (z _ 7£)2 = lim

cosz = 0

Z

2

z-+~ (2z -

11")2

2

z-+~

4

'

 

480

TO ~ He HBJUleTCH cyrn;ecTBeHHO oc060it TOqKOit HJIH IIOJIIOCOM IIOpH.D:Ka BbIlIIe

l-ro H, CTaJIO 6bITb, MO)KeT 6bITb JIH60 YCTpaHHMoit oc060it TOqKOit, JIH60 1I0JIIOCOM l-ro IIOpH.D:Ka. Hait.D:eM IIpe.D:eJI

lim [J(z) (z -

zr.)]

= lim

cos z . (z _ zr.)

= lim

cos z

z~1!:

2

z~1!:

(2z _11")2

2

z~1!:

2(2z -

11")

2

 

2

 

 

2

 

 

[HeoIIPe.D:eJIeHHOCTb BH.D:a g, BOCIIOJIb3yeMcH IIpaBHJIOM JIOIIHTaJIH]

 

= lim

 

= lim -

 

7r

 

(cosz)'

sinz = _ sm"2 = _1.

 

 

Z~~ (2(2z - 11"))'

Z~~

4

4

4

OTCIO.D:a CJIe.n:yeT, 'ITOTOqKa ~ HBJIHeTCH IIOJIIOCOM l-ro IIOpH.D:Ka H

 

r~sJ(z) = }~~ [J(z) (z - ~)] = -~.

 

 

 

2

 

2

 

 

 

 

CJIe.D:OBaTeJIbHO,

 

 

"2

1

 

 

 

 

 

 

 

 

 

resJ(z) = -resJ(z) = -4

 

 

 

 

 

00

11"

 

 

 

 

1

7.5.4. HaitTH BbIqeTbI <PYHKlIHH J(z) = z4 ez BO Bcex OC06bIX TOqKax, OIIpe.D:eJIHTb HX THII, HaitTH BbIqeT B 6ecKoHeqHO Y.D:aJIeHHoit TOqKe. a Oc060it TOqKOit .D:aHHoit <PYHKlIHH, OqeBH.D:HO, HBJIHeTCH TOqKa z = O.

OIIpe.D:eJIHM THII 9TOit oco60it TOqKH C IIOMOrn;blO pa3JIO)KeHHH B pH.D: JIopaHa 110 CTeIIeHHM z:

J()

4!

4 ~ 1

4 3 1 2 1 1 1 1 1 1

z =zez=z

·L.",---n=z +z +2'z +3,z+4'+5':Z+6,2"+'"

 

 

n=O n.z

..... z

~aHHblit pH.D: CXO.D:HTCH B KOJIblle 0 < Iz I < 00 H CO.D:ep)KHT 6eCKOHeqHOe 'fHCJIOqJIeHOB C oTpHlIaTeJIbHbIMH CTeIIeHHMH z. CJIe.D:OBaTeJIbHO, TOqKa 0 - cyrn;ecTBeHHo oc06aH TOqKa <PYHKlIHH J(z). K09<P<PHlIHeHT C-l IIpH l paBeH

1

1

5!

= 120' 3HaqHT,

1 r~sJ(z) = 120'

TaK KaK IIOJIyqeHHbIit pH.D: CXO.D:HTCH B OKpeCTHOCTH 6ecKOHeqHO Y.D:aJIeHHoit

1

 

 

TOqKH, H C-l = 120' TO

 

 

r::J(z)

1

= -r~sJ(z) = -120'

HaiJ.mu 6W"I.emW oaHHwx !PYH'lCqUiJ. 60 6cex oc06wx mO"l.'lCax u onpeoe.t&um'b ux mun, HaiJ.mu 6W"I.em 6 6eC'lCOHe"l.HO yOa.tteHHoiJ. mO"l.'lCe.

7.5.5.

J(z)

3

7.5.6.

eZ

= - 2'

J(z) = --.,

 

 

z-

 

z -

1I"Z

7.5.7.

J(z)

= chz + 3

7.5.8.

Z2

+ 1

1- 2z .

J(z) = (z + i)2

16 CooPHHK 38,IUIq no BWeweA Mll1CMaTIIKe. 2 "YJ!C

481

7.5.9.

J(z) =

e2z

 

7.5.10.

J(z) =

chz

 

 

(2iz -1)2

 

 

(Z - 1)3

 

7.5.11.

J(z) =

z -

1

7.5.12.

J(z) =

z

.

 

 

(z + 1)(z - 2i)

 

 

(z + 3i)(z

+ 2)2

7.5.13.

J(z) =

cosz

 

7.5.14.

J(z) =

1

 

z2(3z -

1T) .

z3 - Z5'

 

7.5.15.

J(z) =

1

 

7.5.16.

J(z) =

cos;;..

 

z3(z2 -

9)2

 

 

Z -"2

 

7.5.17.

J(z) =

si~z.

 

7.5.1S.

J(z) =

1 - cosz

 

7.5.19.

J(z) =

Z

 

7.5.20.

J(z) =

z4

 

COSZ·

 

si~z'

 

 

 

1

 

 

 

 

 

 

 

1

 

 

J(Z) =

ZCOS}.

 

7.5.21.

J(z)=e z.

 

7.5.22.

 

7.5.23.llCIIOJIb3Yfl OCHOBHYIO TeopeMY 0 BbI'ieTax, BbI'UICJIHTb HHTerpaJI

 

f z5 dz- z3' r,lJ;e l - OKPY)KHOCTb

 

1

 

 

 

 

Izl =

-2 .

 

 

 

a

l

 

 

 

 

 

Oc06bIMH TO'IKaMH <PYHKII;HH J(z) =

5 1

3 =

3

1

flBJIfl-

 

 

Z -

Z

Z (z -

1)(z

+ 1)

IOTCfl TO'IKH 0, -1, I.ll3 HHX BHYTPH KPHBOii l

(BHYTPH OKPY)KHOCTH Izl = ~),

O'IeBH,lJ;HO, HaXO,lJ;HTCfl TOJIbKO TO'IKa Zl

=

O. 3Ha'IHT,

 

 

 

 

 

 

 

fJ(z) dz = 21Ti . r~sJ(z).

 

 

 

 

 

 

 

l

 

 

 

 

 

 

TO'IKa Zl

=

0

flBJIfleTCfl IIOJIIOCOM

3-ro IIOpfl,lJ;Ka. Haii,lJ;eM BbI'IeT B 3TOii

TO'IKe:

 

 

 

 

 

 

 

 

 

 

 

resJ(z) =

2\ lim (f(z) . (z - 0)3)" =

1

 

( 3;

. z3)"

 

-2 lim

 

o

. z-tO

 

(Z2 - 1 )" -

 

z-tO

Z (z - 1)

 

 

 

-

2

z-tO

2

z-tO

((z2 - 1)2 )'

 

 

 

 

1

l'

1

 

1

l'

-2z

 

 

 

--1m

--

--1m

 

 

 

 

1.

 

-2(z2 _1)2 -

2(Z2 - 1)· 2z· (-2z)

1

 

= - hm

 

 

(Z2 -

1)4

 

= - ·( - 2)= - 1 .

 

 

2

z-tO

 

 

 

2

 

 

f

5dz

3 =

21Ti'res

51

3 =21Ti·(-I)=-21Ti.

 

I z

 

-z

0

z -z

 

 

 

7.5.24.llCIIOJIb3Yfl OCHOBHYIO ToopeMY 0 Bbl'IeTax, Bbl'IHCJIHTb HHTerpaJI f r,lJ;e l - OKPY)KHOCTb Izl =. 2 3.dz,z+ 1

l (z + z~)

(z - 1)

 

 

 

 

a cI>YHKII;Hfl J(z) =

z+1

 

 

(z + i)

2

(z - 1)

aHaJIHTH'IecKM BO Bceii KOMIIJIeKCHOii

IIJIOCKOCTH 3a HCKJIIO'IeHHeM TO'IeK Zl

=

-2i H Z2 = 1, KOTopble JI€)KaT BHY-

TpH OKPY)KHOCTH Izl = 3. 3Ha'IHT,

 

 

f

J(z) dz = 21Ti (res J(z) + res J(Z)) .

 

 

Zl

Z2

l

482

TaK KaK

 

 

 

 

 

 

6 + 8i

 

 

 

 

 

 

(

z

)

 

 

()

resJ(z) = resJ(z)

6+ 8i

 

 

res J

 

= res J z

=

- 25 '

= -- 25

 

 

Zl

 

 

 

-2.

 

 

Z2

1

 

 

 

(CM. 3a,r:J;a'IY 7.5.1), TO

 

 

 

 

 

 

 

(

z·;;t

 

1

) dz = 21Ti (resJ(z) + resJ(z))

=

 

 

f z

+ ZZ

z -

 

 

-2.

 

1

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= 2 . (6 + 8i _ 6 + 8i) = 0

 

 

 

 

 

 

 

 

 

1TZ

25

25

.

 

BU"I,uc.I/,um'b UUme2pa.l/,'bt no 3aaaUUO.MY r;;oumypy l, Ucno.l/,'b3YSl OCU06UY1O meope.My 0 6U"I,emax:

7.5.25.

 

dz

 

 

f (z - 1)(z

+ 2)'

 

 

 

 

I

 

 

6) l: Iz + 21 = 1;

 

a) l: Iz - 11

= 1;

 

B) l: Izl = 3.

 

7.5.26.

f

cosz

dz, l:

Izl = 1T.

 

(2z - 1T)2

 

 

I

Haf1.mu 6'bt"l,emU aauuux fPyur;;v,uf1. 60 6cex oc06ux mO"l,r;;ax, onpeae.l/,um'b ux mun, uaf1.mu 6'bt"l,em 6 6ecr;;oue"l,uo yaa.l/,euuof1. mO"l,r;;e.

7.5.27.

J(z) =

sin2;..

 

7.5.28.

J(z) =

cos3z

 

 

 

z -"2z

 

 

 

 

 

(2z + 1T)2

7.5.29.

J(z)=

zsin2z

 

7.5.30.

J(z) =

cos3z .

 

 

 

(z + 1Ti)3

 

 

 

 

(z + 2)5

7.5.31.

J(z) =

e- 2z

 

 

7.5.32.

J(z) =

1

Z2(Z -

4i)

 

(1- Z2)3

 

 

 

 

 

 

 

eZ -1

7.5.33.

J(z) =

(z ~l)n' n

E N.

7.5.34.

J(z) =

- 3 - ·

 

 

 

 

 

 

 

 

 

z

7.5.35.

J(z) = ctg2 z.

 

 

7.5.36.

J(z) = z3 sin l.

BU"I,uc.I/,um'b UUme2pa.l/,'bt

no

3aaaUUO.MY r;;oumypy

l,

UCnO.l/,'b3YSl OCU06UY1O

meope.My 0 6'bt"l,emax:

 

 

 

 

 

 

7.5.37.

 

dz

 

 

 

 

 

 

 

f z(z + 2)3'

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

Izl = 1;

 

 

 

l: Izl

 

 

 

a) l:

 

 

6)

= 3.

7.5.38.

 

 

dz

 

 

 

 

 

 

f (z + 1)3(z -

1)2'

 

 

 

 

 

 

 

 

 

 

 

 

I

Iz + 11 = 1;

 

 

l: Iz - 11

= 1;

 

a) l:

 

6)

 

B) l:

Izl

= 3.

 

 

 

 

 

 

483

7.5.39.

f sinz dz

'

 

 

 

I

z

 

 

 

 

 

 

Iz - 21

= Ij

6) l: Izl = 1.

 

a) l:

7.5.40.

fz

4

 

1

 

Izl = 2.

 

 

ez dz, l:

 

 

I

 

 

 

 

 

 

7.5.41.

MO)KeT JIH Y <PYHKlI,HH J(z)

B H30JIHpOBaHHoit oc060it TOqKe:

a)6bITb BbIqeT (pOBHO O,n;HH)j 6) He 6bITb HH O,n;HOro BbIqeTaj

B)6bITb 60JIee O,n;HOro BblqeTa?

7.5.42.IIycTb resJ(z) = O. BepHo JIH, 'ITO

Zo

 

f

J(z)dz = 0

 

 

 

Iz-zol=R

 

 

 

 

 

,n;JIjI JII060ro R > O?

 

 

 

 

7.5.43.

IIycTb res J(z) = o. BepHo JIM, 'ITOTOqKa Zo He jlBJIjleTCjI nOJIIOCOM

 

Zo

 

 

 

 

 

l-ro nopjI,n;Ka <PYHKD;HH J(z)?

 

 

 

7.5.44.

,II;oKa3aTb, 'ITOres(f + g)(z)

= resJ(z) + resg(z),

eCJIH Bce TpH

 

Zo

 

Zo

Zo

 

 

BbIqeTa cyrn:eCTBYIOT.

 

 

 

 

7.5.45.

,II;oKa3aTb, 'ITO eCJIH J(z)

-

HeqeTHM <PYHKD;HjI,

TO res J(z)

 

 

 

 

 

Zo

 

= - res J(z ), eCJIH XOTjI 6b1 O,n;HH H3 BbIqeTOB cyrn:ecTByeT.

7.5.46.

-Zo

 

 

 

 

BblqHCJIHTb

z

 

 

 

 

res

2.

 

 

 

 

 

 

°chz-l- Z2

7.5.47.

1 + Z8

J(z)=cosz·chz· z4 (z 4 + 1)

BO Bcex OC06bIX TOqKax H B 6eCKOHeqHO y,n;aJIeHHoit TOqKe 00.

KOHTPOl1bHASI PA60TA

BapMaHT 1

1.RaitTH 3HaqeHHe <PYHKD;HH J(z) = cos3z B TOqKe ~i. YKa3aTb TOqKH, B KOTOPbIX cyrn:ecTByeT npOH3Bo,n;HM f' (z).

2.Onpe,n;eJIHTb, MO)KeT JIH <PYHKD;HjI eY sin x+x 6bITb ,n;eitcTBHTeJIbHoit qacTbIO aHaJIHTHqeCKoit <PyHKD;HH J(z)? ECJIH ,n;a, TO HaitTH J(z).

3. BbIqHCJIHTb fRe(z2) dz, r,n;e l - .n;yra napa60JIbI y = 2X2 OT TOqKH Zl = 0

I

,n;o TOqKH Z2 = 1 + 2i.

484

4. HaihH pa3JIO:>KeHHe cPYHKIJ;HH --L3 B pll,lJ; JIopaHa B TO'fKeZo = 1. YKa-

z-

3aTb rJIaBHYIO H npaBHJIbHYIO 'faCTHpll,lJ;a H 06JIacTb ero CXO,lJ;HMOCTH.

5. HanTH Bce oco6ble TO'fKHcPYHKIJ;HH --Ll sin --L , onpe,lJ;eJIHTb HX THn,

Z+ z- 1

,nJIlI nOJIlOca HanTH ero nOpll,lJ;OK. HanTH BbI'feTbIBO Bcex OC06bIX TO'fKaXH B 6eCKOHe'fHOY,lJ;aJIeHHOn TO'fKe.

BapMaHT 2

1. HanTH 3Ha'feHHecPYHKIJ;HH J(z) = ch Z B TO'fKe2 + Tri. YKa3aTb TO'fKH,B KOTOPbIX cyrn:eCTByeT npOH3BO,lJ;HM f' (z).

2.

Onpe,lJ;eJIHTb, MO:>KeT JIH cPYHKIJ;HlI

cos x sh y - 2y 6bITb MHHMOn 'faCTblO

aHaJIHTH'feCKOncPYHKIJ;HH J(z) ? ECJIH ,lJ;a, TO HanTH J(z ).

3.

BbI'fHCJIHTb1(2Z + l)z dz, r,lJ;e l -

,IJ;yra OKPY:>KHOCTH Izl = 1 OT TO'fKH

 

I

 

Zl

= 1 = ei .O ,lJ;O TO'fKHZ2 = -1 = ei .1r

 

4. HanTH pa3JIO:>KeHHe cPYHKIJ;HH cos(z - 1) B pll,lJ; JIopaHa B TO'fKeZo = o.

YKa3aTb rJIaBHYIO H npaBHJIbHYIO 'facTHpll,lJ;a H 06JIaCTb ero CXO,lJ;HMOCTH.

5. HanTH Bce oco6ble TO'fKHcPYHKIJ;HH

1

__Z_e z + 1

Z2 -1 '

onpe,lJ;eJIHTb HX THn, MlI nOJIlOca HanTH ero nOp1l,lJ;OK. HanTH BbI'feTbIBO Bcex OC06bIX TO'fKaXH B 6ecKoHe'fHOY,lJ;aJIeHHOn TO'fKe.

BapMaHT 3

1.

HanTH 3Ha'feHHecPYHKIJ;HH

J(z) =

~ B TO'fKe 1 - i. YKa3aTb TO'fKH, B

KOTOPbIX cyrn:ecTByeT npOH3BO,lJ;HM f' (z).

2.

Onpe,lJ;eJIHTb, MO:>KeT JIH cPYHKIJ;HlI

e-z cos Y + 2x 6bITb ,lJ;enCTBHTeJIbHOn

qacTblO aHaJIHTH'feCKOncPYHKIJ;HH J(z)? ECJIH ,na, TO HanTH J(z).

3. BbI'fHCJIHTbIlzl dz, r,lJ;e l -

OTpe30K npllMOn OT TO'fKHZl = 0 ,lJ;O TO'fKH

 

I

 

 

Z2

= 3 - 2i.

 

 

4. HanTH pa3JIO:>KeHHe cPYHKIJ;HH z! 1 B pll,lJ; JIopaHa B TO'fKeZo = 2. YKa3aTb rJIaBHYIO H npaBHJIbHYIO 'facTHpll,lJ;a H 06JIacTb ero CXO,lJ;HMOCTH.

5

Z - i

1

. HanTH Bce oco6ble TO'fKHcPYHKIJ;HH

z + 1 cos Z' onpe,lJ;eJIHTb HX THn, MlI

nOJIIoca HanTH ero nOpll,lJ;OK. HanTH BbI'feTblBO Bcex OC06bIX TO'fKaXH B 6eCKOHe'fHOY,lJ;aJIeHHOn TO'fKe.

485

BapMaHT 4

1. HaitTH'3Ha'IeHlle<PYHKIJ;HH J(z) = sh iz B TO'IKe~ - i. Y Ka3aTb TO'IKH,B KOTOPbIX CYIIJ;eCTByeT "POH3BO,n;HruI f' (z ).

2. OIIpe,n;eJIHTb, MO)J(eT JIH <PYHKIJ;HjI cos Y ch x - y 6bITb MHHMOit 'IaCTbIOaHaJIHTH'IeCKoit<PYHKIJ;HH J(z)? ECJIH ,n;a, TO HaitTH J(Z).

3. BbI'IHCJIHTb

fZ;z,

I

r,n;e l - ,n;yra OKPY)J(HOCTH Izl = 1 OT TO'IKHZl = 1 = ei .O ,n;o TO'IKHZ2 = -i =

= ei(-~).

4. HaitTH pa3JIo)J(eHHe <PYHKIJ;HH sin(2 - z) B PjI,n; JIopaHa B TO'IKeZo = o.

YKa3aTb rJIaBHYIO H IIpaBHJIbHYIO 'IaCTHPMa H 06JIaCTb ero CXO,n;HMOCTH.

5.

z

+ 1

1

HaitTH Bce oc06bIe TO'IKH<PYHKIJ;HH z

_ 1 sh Z' OIIpe,n;eJIHTb HX THII, ,n;JIjI

IIOJIIOCa HaitTH ero IIOPjI,n;OK. HaitTH BbI'IeTbIBO Bcex OC06bIX TO'IKaX H B 6ecKoHe'IHOy,n;aJIeHHoit TO'IKe.

060-
f(t)· X(t):

rllasa 8. onEPAu.l'IOHHOEl'IC'-Il'ICllEHl'IE

§1. OPVlnlHAll Vl306PA>KEHVlSI. nPE06PA30BAHVlE llAnllACA. HAXO>KAEHVlE Vl306PA>KEHVI~

Opl>'1rIl1Han111 npeo6pa30aaHII1e llannaca

~KOMnJIeKCH03Ha'lHaH<PYHKD;HH f(t) .n;eii:cTBHTeJIbHOrO nepeMeHHoro Ha3bIBaeT-

0pU2U'H.a.n.OM,

 

CH

 

eCJIH OHa y.n;OBJIeTBOpHeT CJIe.n;yIOrn;HM TpeM YCJIOBHHM:

 

1.

f(t)

= °)J.JIH Bcex t < OJ

 

2.

f(t)

- a6COJIIOTHO HHTerpHPyeMa6 Ha JII060M oTpe3Ke [0, a] nOJIOlKHTeJIbHoit

nOJIYOCHj

 

 

3.

cyrn;eCTBYIOT .n;eitcTBHTeJIbHble '1HCJIaM > 0, to ~ °H S TaKHe, 'ITOIf(t)1

<

< M est npH Bcex t > to ~ 0.

~

IIpocTeitIIIHM OpHrHHaJIOM HBJIHeTCH fPY'H.J(;v,W/, Xe6ucaiiaa, onpe.n;eJIHeMaH CJIe-

.n;yIOrn;HM 06pa30M:

 

x(t) = {O,

npH t < 0,

1,

npH t ~ 0.

ECJIH <PYHKD;HH cp(t) y.n;oBJIeTBOpHeT YCJIOBHHM 2 H 3, TO <PYHKD;HH f(t) = cp(t) . x(t) y.n;OBJIeTBOpHeT H YCJIOBHIO 1, T. e. HBJIHeTCH 0pHrHHaJIOM. Pa.n;H ynporn;eHHH 3anHCH B .n;aJIbHeitIIIeM, 3a He60JIbIIIHM HCKJIIO'IeHHeM,6y.n;eM nHcaTb f(t) BMeCTO

~ IIycTb f(t) - OpHrHHaJI, a p = Q +ifJ - KOMnJIeKCHOe '1HCJIO.H306pa-:>tCe'H.UeM

OpHrHHaJIa f(t) Ha3bIBaeTCH <PYHKD;HH F(P), onpe.n;eJIHeMaH paBeHcTBoM:

00

F(P) = jf(t)e- Pt dt. o

<I>yHKD;HH F(P) Ha3bIBaeTCH TaKlKe npeo6pa306a'H.UeM JIan.n.aca OT <PyHKD;HH f(t). ~

MOlKHO nOKa3aTb, 'ITOHec06cTBeHHbIit HHTerpaJI B onpe.n;eJIeHHH H306palKeHHH CXO.n;HTCH )J.JIH 3Ha'leHHitp, y.n;OBJIeTBOpHIOrn;HX YCJIOBHIO Rep> s, a onpe.n;eJIHeMaH HM <PyHKD;HH F(p) HBJIHeTCH aHaJIHTH'IeCKoit<pYHKD;Heit B nOJIynJIOCKOCTH Rep> s.

TOT <paKT, 'ITO<PyHKD;HH F(P) HBJIHeTCH H306palKeHHeM OpHrHHaJIa f(t),

3Ha'laIOTTaK: f(t) -+t F(P) HJIH F(P) = L{f(t)}.

Pa3HbIM OpHrHHaJIaM COOTBeTCTBYIOT pa3Hble H306palKeHHH, TO'lHeeHMeeT MeCTO CJIe.n;yIOrn;aH

TeopeMa 8.1 (€!AII1HCTBeHHOCTII1 II1s06pa)l(eHII1H). ECI1I11 oplllrlllHal1bl f(t) III g(t)

HenpepblBHbl III IIIMelOT OAIliHaKOBoe 111306pa)l(eHille F(P), TO 3TIII cPYHKlIlII1II COBna-

AaIOT.

6To'lHee:HHTerpa.rr ,n;OJIlKeH CYIIIeCTBOBaTb XOTH 6bI B Hec06cTBeHHOM CMbICJIe.

487

CBoiiicTBa npe06pa30BaHMR flannaca

B ,ll;aJIbHethneM BCIO,!I;y, eCJIH He oroBopeHo npoTHBHoe, f(t) 0603Ha'iaeTHeKHti: OPHPHHaJI. Ih06paJKeHHe OpHPHHaJIa 0603Ha'iaeTCHTOti: lKe 6YKBOti:, TOJIbKO 3arJIaBHOti:, HarrpHMep: f(t) ~ F(p), g2(t) ~ G2(P) H T.,II;. BaJKHeti:mHe CBoti:cTBa rrpe06pa30BaHHH JIarrJIaca OTpaJKeHbI B CJIe,!l;yIOm;HX BOCbMH TeopeMax.

TeopeMa 8.2 (CBOMCTBO nIllHeMHocTIII). Ami npOlll3BOl1bHbiX KOMnl1eKCHblX noCTOHHHblX a III f3 cnpaBeAl1l11BO COOTHoweHllle: f(t) +f3. g(t) ~ aF(p) + f3G(p).

TeopeMa 8.3 (nOA06I11R). Al1H 11Io6oro Ae"CTBIllTel1bHOrO r > 0 cnpaBeAl1l11BO coOTHoweHllle: f(r· t) = ~. F (~).

TeopeMa 8.4 (cMe~HIIIR). Al1H 11Io6oro KOMnl1eKCHoro '1I11Cl1a po IIIMeeT MeCTO COOTHoweHllle: epot f(t) ~ F(P - po).

TeopeMY CMem;eHHH (H306paJKeHHH) Ha3b1BaIOT HHOP,II;a TeopeMoti: C,!I,BHPa (H30-

6paJKeHHH).

TeopeMa 8.5 (3anaSAbIBaHIIIR). Al1H 11Io6oro Ae"CTBIIITeJ1bHOrO n0110>KIIITeJ1bHoro '1I11Cl1a r IIIMeeT MeCTO COOTHoweHllle: f(t - r) ~ e-p-r· F(P).

TeopeMY 3arra3,11;blBaHHH (OpHPHHaJIa) pelKe Ha3b1BaIOT TeopeMoti: CMem;eHHH

HJIH C,II;BHPa OpHPHHaJIa.

CJIe,!l;yeT OTMeTHTb, 'ITOrrpH rrpHMeHeHHH TeopeMbI 3arra3,11;bIBaHHH HYlKHO rroMHHTb, 'ITOrro HameMY COPJIameHHIO rro,ll; <PYHKD;Heti:-opHPHHaJIOM f(t) rrOHHMaeTCH

<PYHKD;HH f(t)· X(t); rr03TOMY rro,ll; <PYHKD;Heti: f(t - r) CJIe,!l;yeT rrOHHMaTb <PYHKD;HIO f(t - r) . X(t - r), a He f(t - r) . x(t). IIpH HCrrOJIb30BaHHH 3TOti: TeopeMbI YMeCTHO He HCrrOJIb30BaTb COKpam;eHHYIO 3aIIHCb ,!I;JIH OpHPHHaJIa H rrpHrrHCblBaTb <PYHKD;HIO XeBHcati:,II;a B Ka'leCTBeCOMHOlKHTeJIH. TeopeMY 3arra3,11;blBaHHH '1acTOHCrrOJIb3yIOT

,!I;JIH HaxolK,II;eHHH H306paJKeHHti: rrepHO,ll;H'IeCKHX<PYHKD;Hti:.

TeopeMa 8.6 (0 AlllclJclJepeH4IIIPOBaHIIIIII

oplllrIllHana). ECl1l11 ct>YHKLlIIIH f(t) III ee

npOlll3BOAHbie HBl1HIOTCH oplllrlllHal1aMIll III

f(t)

~ F(P), TO

 

!,(t) ~ pF(P) -

f(O),

 

!"(t) ~ p2 F(P) - pf(O) - !'(0),

 

f(n) (t) ~ pn F(P) _ pn-1 f(O) -

pn-2!' (0) -

... - pf(n-2) (0) -

/n-1) (0);

nplll 3TOM nOA f(k)(O) nOHIllMaeTCH

lim

f(k)(t),

k = 1,2, ... , n -

1.

 

t~+O

 

 

 

 

488

9TH <P0PMYJIbI 3aMeTHO yrrpOm;aIOTCR, eCJIH f(O) = 1'(0) = ... = t<n-l)(o) = O.

B aTOM CJIY'Iae:

!'(t) -+t pF(P) , !"(t) -+t p2 F(P), ... ,

TeopeMa 8.7 (0 AlllclJclJepeH~poBaHIIIIII 111306pa)l(eHIIIR).

ECl1l11 f(t)

-+t

F(P) TO

-tf(t) -+t

F' (P). B 6011ee 06U4eM Cl1YLfae: (-lttn f(t) -+t

F(n) (p).

 

 

 

1'13aToit TeopeMbI, B '1acTHOCTH,rrOJIY'IaeM:t -+t

-

1

t

2 .

-

2

t7t.

n!

 

 

-+t

 

 

-+t

pn+l'

 

 

 

p2 '

 

 

.

p3' ... ,

.

TeopeMa

8.8 (06 IIIHTerplllpOBaHlII1II oplllrIllHana).

ECl1l11

 

f(t)

-+t F(P), TO

 

 

t

F~).

 

 

 

 

 

 

 

 

 

 

 

/f(T)dT-+t

 

 

 

 

 

 

 

 

 

 

o

TeopeMa 8.9 (06 IIIHTerplllpOBaHlII1II 111306pa)l(eHIIIR).

ECl1l11 f(t) -+t F(P) III IIIH-

00

fW

/00

Terpal1 /

F(P) dp RBl1ReTCR CXOARU4I11MCR, TO

-t- -+t

F(P) dp.

p

 

 

p

TeopeMbI 0 ,n;H<p<pepeHIJ;HpOBaHHH H HHTerpHpOBaHHH OpHrHHaJIa ,n;eMOHCTpHPYlOT TOT <paKT, 'ITOOrrepaIJ;HH ,n;H<p<pepeHIJ;HpOBaHHR H HHTerpHpoBaHHR OpHrHHaJIOB CBO,n;RTCR COOTBeTCTBeHHO K OrrepaIJ;HRM YMHO)KeHHR H ,n;eJIeHHR Ha p HX H306p~e­

HHit.

B 3aKJIIO'IeHHerrpHBe,n;eM Ta6JIHU;Y H306p~eHHit HeKOTopbIX OCHOBHbIX <PYHKIJ;Hit (HH)Ke rro,n;pa3YMeBaeTCR, 'ITOa H (3 - KOMrrJIeKCHbIe '1HCJIa,n - HaTypaJIbHoe):

Nt

f(t)

F(P)

Nt

f(t)

F(P)

I

1

1

VII

eat sin (3t

(3

p

(p_a)2+(32

 

 

 

 

 

 

 

 

 

II

eat

1

VIII

eat cos (3t

(p- a)

p-a

(p - a? + (32

 

 

 

 

III

tn

n!

IX

t . sin (3t

2p(3

--

(p2 + (32)2

 

 

pn+l

 

 

IV

tneat

n!

X

t . cos (3t

p2 _ (32

(p2 + (32)2

 

 

(p - at+1

 

 

V

sin(3t

(3

XI

sh(3t

(3

p2 + (32

---

 

 

 

 

p2 _ (32

VI

cos (3t

P

XII

ch(3t

P

p2 + (32

---

 

 

 

 

p2 _ (32

489

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]