Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Сборник задач по высшей математике 2 том

.pdf
Скачиваний:
68
Добавлен:
15.03.2015
Размер:
27.38 Mб
Скачать
1R.2 .

Llv = 82v + 82v = 0

8x2 8y2

)J,JIa JIlo6oit napbI .D:eitcTBHTeJIbHbIX qHCeJI x H y, T. e. cPYHKU.Ha V(X, y) aBJIaeTca rapMOHHqeCKoit BO Bceit nJIOCKOCTH 3HaqHT, cyru.eCTByeT TaKM aHaJIHTHqeCKM BO Bceit KOMnJIeKcHoit nJIOCKOCTH C cPYHKU.Ha J(z ), qTO

J(z) = J(x + iy) = u(x, y) + iv(x, y).

2. Hait.D:eM .D:eitcTBHTeJIbHYIO qacTb u(x, y). IIepBoe H3 YCJIOBHit KOWHPHMaHa (2.1) .D:aeT paBeHCTBO g~ = g~ = 2x, H3 KOTOPOro B03M02KHO onpe-

.D:eJIHTb cPYHKU.HIO u(x, y) C TOqHOCTblO .D:O CJIaraeMoro <p(y) - cPYHKU.HH, 3aBHcaru.eit TOJIbKO OT Y H He 3aBHcaru.eit OT x, - CJIe.D:YIOru.HM 06pa30M:

u(x, y) = ! g~ dx + <p(y) = ! 2x dx + <p(y) = x 2 + <p(y).

TaK KaK no BTOPOMY H3 YCJIOBHit (2.1) BbIllOJIHaeTCa paBeHCTBO g~ = - g~ =

= -2y,TO

8u(x,y) =2...(

 

2+

())=-2

 

 

 

 

x

y,

 

 

 

 

8y

8y

 

<p

y

 

 

T.e.

~(x 2) + ty (<p(y)) = 0 + <p'(y) = -2y.

 

 

 

113 nOCJIe.D:HerO paBeHCTBa HMeeM:

 

 

 

 

 

 

 

 

 

 

<p(y) = !(-2y) dy = _y2 + C,

 

 

r.D:e C = const, C E lit

3HaqHT, u(x, y) = x 2 -

y2 + C, OTKY.D:a OKOHqaTeJIbHO

J(z) = J(x + iy) = u(x, y) + iv(x, y) = (x2 -

y2 + C) + i(2xy - 3) =

 

= (x 2 - y2 + i

. 2xy) + C -

3i = (x + iy)2 + C -

3i = Z2 + C - 3i.

7.2.18.

HaitTH MH02KeCTBO TOqeK, B KOTOPbIX cPYHKU.Ha u(x,y) = eX cosy

 

Y.D:OBJIeTBOpaeT YCJIOBHIO

Llu

=

O. Onpe.D:eJIHTb, cyru.ecTByeT

JIH

 

aHaJIHTHqeCKM B HeKoTopoit 06JIaCTH D cPYHKU.Ha J(z) (z=x+iv),

 

)J,JIa KOTOPOit Re J = u. ECJIH TaKM cPYHKU.Ha J(z) cyru.eCTByeT, TO

 

HaitTH ee.

 

 

 

 

 

 

 

 

 

 

a 1. Hait.D:eM qaCTHble npOH3BO.D:Hb1e:

 

 

 

 

 

8u = 2... (eX cos y)

= eX cos y,

 

 

 

 

 

 

 

8x

8x

 

 

 

 

 

 

 

 

 

 

 

82 u

= 2... (eX cos y)

= eX cos y

 

 

 

 

 

 

 

8x2

8x

 

 

 

'

 

 

 

 

 

 

 

CJIe.D:OBaTeJIbHO,

 

 

 

 

 

 

 

 

 

 

 

 

Llu = 82u + 82u = eX cosy -

eX cosy = 0

V(x,y) E IR2.

 

 

8x

2

8y2

 

 

 

 

 

 

 

 

450

451
vex, y).

TaKHM 06pa3oM, <PYHKD:HH U(X, y) rapMOHHqeCKM B IIJIOCKOCTH C, H 3HaqHT, cym;ecTByeT TaKM aHaJIHTHqeCKM B C <PYHKD:HH fez), qTO fez) = f(x+iy) =

==u(x,y) +iv(x,y).

2.Hail:.n:eM MHHMYIO qacTb vex, y). IIepBoe H3 YCJIOBHil: KOllH-PHMaHa

g:= g~ = eX cosy, oTKy.n:a B03MO)l{HO olIpe.n:eJIHTb

cPyHKD:HIO vex, y) C TOqHOCTblO .n:o CJIaraeMOro cp(x) -

<PYHKD:HH, 3aBHcHm;eil:

TOJIbKO OT x H He 3aBHCHm;eil: OT y, -

CJIe.n:yIOm;HM 06Pa30M:

 

 

vex, y) = ! g~ dy +

cp(x) = ! eX cos y dy + cp(x) =

eX sin y +

cp(x).

 

TaK KaK 110 BTOPOMY H3 YCJIOBHil: (2.1) HMeeM

 

 

 

 

ov =

_ou = -(-eXsiny) =exsiny

,

 

 

ox

oy

 

 

 

 

TO

 

 

 

 

 

 

tx (eX siny + cp(x)) = eX siny,

 

 

 

 

tx (eX sin y) +

tx (cp( x)) =

eX sin y + cp' (x) =

eX sin y.

 

 

CJIe.n:oBaTeJIbHO, cp'(x) =

0, oTKy.n:a cp(y) = C, r.n:e C

E lR. 3HaqHT, v(x,y) =

=exsiny+C, H

 

 

 

 

 

 

fez) = f(x + iy) = u(x, y) + iv(x, y) = eX cosy + i(eXsiny + C) =

 

 

= eX (cos y + i sin y) +

iC = eZ

+ iC.

7.2.19.BbIHCHHTb, 6y.n:eT JIH CKaJIHpHOe IIOJIe v(x,y) = co;x rapMOHHqeCKHM (CM. c. 243). Cym;ecTByeT JIH aHaJIHTHqeCKM B HeKoTopoil: 06JIacTH D <PYHKn:HH fez) (z = x + iv),.D:JIH KOTOPOil: Imf = v?

ECJIH TaKM <PYHKn:HH fez) cym;ecTByeT, TO Hail:TH ee.

Q Hail:.n:eM qacTHbIe IIPOH3Bo.n:HbIe:

ov = ~ (COSX) = _sinx

,

 

 

ox ox

y

 

 

y

 

 

 

02V

 

cos x

 

 

 

 

ox2

--y-,

 

 

CJIe.n:OBaTeJIbHO,

 

 

 

 

 

 

 

~v =

02v +

02V =

_ cos x +

2 cosx =

cos x (2 _ y2).

 

ox2

oy2

Y

y3

y3

OTclO.n:a BH.n:HO, qTO ~v =

0 IIpH Y =

±J2 HJIH IIpH X = ~ +rrk, k E Z, y :f. O.

MHO)l{eCTBO Bcex TOqeK, B KOTOPbIX ~v = 0, He 06pa3yeT HHKaKOil: 06JIa-

CTH B ]R2, H 3HaqHT, He cym;ecTByeT HHKaKoil: aHaJIHTHqeCKoil: <PYHKD:HH fez) = f(x + iy) C MHHMOil: qacTblO

Ha'iJmu M/H.OOICeCm60 mO"l,e'IC,

6 'lCOmOpb/,X fjjy'lt'IC'lJ,'l.lJI U(X, y) (U.ltU V(X, y») .R6AA-

emCR eap.MO'ltU"I,ec'ICo'iJ. B'btRc'ltum'b,

cyw,eCm6yem .ltU a'lta.ltUmU"I,eC'ICM 6 'lte'ICo-

mopo'iJ

o6.1tacmu D fjjy'lt'IC'I..4U.R

J(Z)

(Z = x + iy),

OAA

'lComopo'iJ Re J = U

(CO-

Om6emCm6e'lt'ltO ImJ = V).

Ec.ltu

ma'ICM fjjy'lt'IC'I..4U.R

J(z) cyw,ecm6yem,

mo

'lta'iJmu

ee.

 

 

 

 

 

 

7.2.20.

u(X,y) = x.

 

7.2.21.

v(x,y) = y2 - x 2 - 2.

 

7.2.22.

 

1

 

7.2.23.

v(x, y) = 3xy2 - x 3 + 7y.

v(x,y) = -yo

 

7.2.24.

u(x,y) = cosychx.

7.2.25.

u(x,y) = eXchy.

 

7.2.26.

v(x, y) =

2 X 2'

7.2.27.

v(x, y) = - cos 2x sh 2y+3x.

 

X

+y

 

 

 

 

 

7.2.28.

u(x, y) = In(x2 + y2).

7.2.29.

v(x, y) = arctg ~ + 2y.

 

,aAA oa'lt'lto'iJ fjjy'lt'IC'I..4uu J(z) Y'ICa3am'b mo"l,'lCu, 6 'lComop'btx cyw,ecm6yem npoU3600'ltM f'(z), u 'lta'iJmu npou3600'lty'lO 6 amux mO"l,'lCax:

7.2.30.

J(z) = Imz.

7.2.31.

J(z) =

1

-=:.

 

J(z) = In(iz).

 

 

Z

7.2.32.

7.2.33.

J(z) =

1;1'

7.2.34.

J(z) = e3z

7.2.35.

J(z)=ishz.

7.2.36.

,n:oKa3aTb, qTO He cyru;ecTByeT aHaJUlTllqeCKoil: Ha Bceil: IIJIOCKOCTII

 

C <PYHKD:IIII, ~JUI KOTOPOil: <PYHKD:IIH x 2 - y HBJIHJIaCb 6bI MHIIMOil:

 

qacTblO.

 

 

 

Ha'iJmu .M'ltOOlCeCm60 mO"l,e'IC, 6 'lComopb/,x fjjy'lt'IC'I..4U.R u(x, y) .R6AAemCR

eap.MO-

'ltu"l,ec'ICo'iJ. Ha'iJmu a'lta.ltumu"l,ec'ICY'lO 'Ita amo.M .M'ltOOlCeCm6e fjjy'lt'IC'I..4u'lO

J(z) =

= J(x + iy),

OAA 'lComopo'iJ fjjy'lt'IC'I..4U.R u(x,y) 6yoem .R6AAm'bCR oe'iJcm6um€.!t'b-

'lto'iJ "I,acm'b'lO.

Y'lCa3am'b coom6emcm6Y'lOw,y'lO .M'ltU.My'lO "I,acm'b v(x,y).

 

7.2.37.u(x, y) = y + x 2 - y2 + 1. 7.2.38. u(x, y) = e- Y cos x - x.

7.2.39.

 

(

) _

y

2 )

+ X

2

y

2

.

 

U

 

X, Y -

2(x2 + y

-

 

y2 _ x2

7.2.40.u(x, y) = (x2 + y2)2

KOHTponbHble BonpOCbl III 60nee CnO)f(Hble 3aWlHIIIH

7.2.41. MO:>KeT JIll <PYHKD:IIH 6bITb ~1I<p<pepeHD:llpyeMoil: B TOqKe Zo II He 6bITb aHaJIIITllqeCKoil: B 9TOil: TOqKe?

7.2.42. MO:>KeT JIll <PYHKD:IIH 6bITb aHaJIIITllqeCKoil: TOJIbKO B O~HOil: TOqKe?

7.2.43. MO:>KeT JIll <PYHKD:IIH, aHaJIIITllqeCKaH B 06JIaCTII, 6bITb:

a) CYMMOil: ~BYX <PYHKD:llil:, He aHaJIIITllqeCKIIX B 9TOil: 06JIaCTlli

452

$
cyw;ecTByeT.
eCJIH 3TOT npe,n;eJI cyw;ecTByeT H He 3aBHCHT OT BbI60pa npOMelKYTO'lHbIXTO'leKZk
Re J(z)

6) "pOH3Be,ll;eHHeM ,ll;BYX cPYHKII,Hti, He aHaJIHTHqeCKHX B 9TOti o6JIa-

CTH;

B)qacTHbIM ,ll;BYX cPYHKII,Hti, He aHaJIHTHqeCKHX B 9TOti 06JIacTH;

r)CYMMOti aHaJIHTHqeCKoti H He aHaJIHTHqeCKoti B 9TOti 06JIacTH cPYHKII,Hti;

~) "pOH3Be,ll;eHHeM HeHYJIeBoti aHaJIHTHqeCKoti H He aHaJIHTHqeCKOti B 9TOti 06JIacTH cPYHKII,Hti?

7.2.44. BepHO JIH, 'ITOcPYHKII,HjI J(z) aHaJIHTHqeCKajl B 06JIacTH D, eCJIH HIm J(z) - cPYHKII,HH, rapMOHHqeCKHe B 9TOti 06JIaCTH?

7.2.45. qTO MO:lKHO CKa3aTb O,ll;BYX aHaJIHTHqeCKHX B O,ll;HOCBjl3HOti o6JIaCTH cPYHKII,HjlX, eCJIH HX ,ll;eticTBHTeJIbHble qacTH:

a) COBIIa,D;aIOTj

6) OTJIHqaIOTCjI Ha IIOCTOjlHHOe CJIaraeMOe;

B)OTJIHqaIOTCjI Ha IIOCTOjlHHblti MHQ)KHTeJIb?

7.2.46.~OKa3aTb, 'ITO,ll;JIjI ,ll;HcPcPepeHII,HPyeMoti cPYHKII,HH J(z):

a) gz (ReJ(z») = ~f'(z);

6) gz (ImJ(z») = i/'(z).

7.2.47.~OKa3aTb, 'ITOypaBHeHHe JIaIIJIaca MO:lKeT 6bITb 3aIIHcaHO B CJIe-

,ll;yIOIII,eti cPopMe:

()2 J

8z8z = o.

§3. lilHTErPlilPOBAHlilE CIlYHKU.lilVi KOMnllEKCHOrO nEPEMEHHOrO

~ I1YCTb Ha KOMnJIeKcHoil: nJIOCKOCTH C 3a,n:aHa opHeHTHpOBaHHaH Kyco'lHO-rJIa,n:- KaH KpHBaH l, Ha KOTOPOil: onpe,ll;eJIeHa <PYHKIJ;HH J(z). Pa306beM 3Ty KPHBYIO Ha n

'{aCTeil: (Zk-l, Zk) TO'lKaMHzo, Zl, ... , zn,

npOHYMepOBaHHbIMH B HanpaBJIeHHH OT

Zo - Ha'laJIbHoil:TO'lKHKPHBOil: "

,n;o zn -

KOHe'lHoil:TO'lKH" H Ha KalK,n;Oil: 'IacTH

BbI6epeM KaKYIO-HH6y,n;b TO'lKYCk

(k = 1,2, ... , n). HttmezpaJlo.M om rjjytt'l(;tJ,uu J(z)

no 'l(;pu(Jo1J. l Ha3bIBaeTCH npe,n;eJI:

(3.1)

Ii Ck.

ECJIH <PYHKIJ;HH J(x) HenpepbIBHa Ha KPHBOil: l, TO HHTerpaJI (3.1)

ECJ1H Z = X + iy H J(z) = u(x, y) + iv(x, y), TO

!J(z) dz = !(u(x, y) + iv(x, y») d(x + iy) = !(u(x, y) + iv(x, y»(dx + i dy) =

I

I

I

 

= !(u(x,y)dx-v(x,y)dy) + i!(v(x,y)dX+ u(x,y)dy), (3.2)

 

I

I

453

T. e. HHTerpan: (3.1) MOlKeT 6b1Tb 3anHcaH B BH,n;e

CYMMbI ,n;BYX KPHBOJIHHei!:HbIX

HHTerpan:oB 2-ro po,n;a.

 

ECJIH KpHBaH l 3a,n;aHa ypaBHeHHeM y = y(x) HJIH napoi!: napaMeTpH'leCKHX

ypaBHeHHi!: y = yet), x = x(t), TO B cl>0pMYJIaX (3.2)

MOlKHO 3anHcaTb

dy = dy(x) = y'(x)dx

 

HJIH, COOTBeTCTBeHHO,

 

dx = dx(t) = x'(t)dt, dy = dy(t) = y'(t)dt.

,IJ,OBOJIbHO 'lacTOB Ka'leCTBenapaMeTpa t Bbl6HpaeTcH yrOJI t.p = arg z.

~ct>YHKIJ;HH F(z) Ha3b1BaeTCH nepaoo6pa3'tto1:t cl>YHKIJ;HH fez) B 06JIaCTH D, eCJIH

F(z) ,n;HcI>cI>epeHIJ;HPyeMa B aToi!: 06JIaCTH, H F'(z) = fez)

Vz E D.

$

TeopeMa 7.2. nYCTb <PYHKLlIIIJI

fez) aHaIlIllTIII'leCKaJlB OAHOCBJl3HOin 061laCTill D. a

l - HeKOTOpaJi KplIIBaJi (C Ha'lallbHoinTO'lKOinZl III KOHe'lHoinTO'lKOinZ2). LlelllllKoM

lle>Kal..l..laJi B D. TorAa

 

 

 

 

 

 

AIlJl IIIHTerpalla !fez) dz

1) cYl..l..leCTByeT nepBoo6pa3HaJi F(z) AIlJl fez)

B

D. III

BepHa cjJopMyna HbIOToHa-f1eiA6HHL/a:

 

 

 

 

 

 

,

!fez) dz =F(z2) -

F(Zl),

 

 

(3.3)

,

 

 

 

 

 

 

 

 

 

T. e. 3TOT IIIHTerpall He 3aBIIICillT OT BIllAa

KPIllBOin

l.

a

3aBIIICillT OT

Ha'lallbHoin III

KOHe'lHoinTO'leKZl III Z2;

 

 

 

 

 

 

 

 

 

2) eC1l1ll l - 3aMKHYTaJi KpIIIBaJi. TO BepHa

TeopeMa KOWH:

 

 

ff(z) dz = 0

 

 

 

 

(3.4)

('lepe3f 0603Ha'laeTCJIIIIHTerpall'no3aMKHYToin KplllBOin l);

 

,

 

 

 

 

 

 

l.

 

 

3) eC1l1ll TO'lKa Zo lle>KIIIT BHYTPIll

3aMKHYToin

KPIllBOin

TO BepHa

HHTerpanbHaR

cjJopMyna KOWH:

 

1

 

fez)

dz

 

 

f(zo) =

f

 

(3.5)

-2.

 

 

 

 

 

j<n)(zo) = 2:i

f,

1TZ

, z -

Zo

 

 

 

 

(z _ ZO)n+l

Z,

 

 

 

 

 

 

fez)

d

 

n = 1,2, ...

(3.6)

 

 

 

 

 

 

 

(06XOA KplllBOin l COBepWaeTCJI

npOTIllB 'laCoBoinCTpeIlKIII).

 

7.3.1. BbI'IHCJIHTbHHTerpaJI J = !Imzdz, r,ll;e l:

I

a) OTpe30K rrpHMoi!: OT TO'lKHO,ll;O TO'lKH1 + 2i;

6) .n.yra rrapa60JIbI y = 2X2 OT TO'lKH0 ,n;o TO'lKH1 + 2i.

454

o a) Tax Kax l -

OTpe30K rrpHMoil: y = 2x (pHC. 103) H 1m z = y, TO

 

1

1

 

J= !yd(X+iy) = !2xd(x+i.2x) = !2x.(dx+2idx) =

I

0

0

 

1

1

1

1

= !2x dx + !2x . 2i dx = 2 !x dx + 4i !x dx =

o

0

0

0

 

=

2 11

+ 2i) . (12 - 02 ) = 1 + 2i.

 

(2 + 4i) . ~ 0 = (1

 

Puc. 109

 

 

Puc.

104

 

6) Tax KaK .n:JIH Bcex TO'leKl

HMeeM y = 2X2, TO (pHC. 104)

 

 

1

 

 

1

 

 

J = !yd(x + iy) = !2x2 d(x + 2X2) = !2x2(dx + 2id(X2») =

 

I

0

 

0

 

 

 

1

 

1

 

1

 

= !2X2 (dx + 2i . 2x dx) = 2

!x 2 dx + 8i !x 3 dx =

 

 

o

 

0

 

0

 

 

x311

x411

=

2

2

+ 2i.

 

= 2. 3 0 + 8i· 4 0

3(1- 0)

+ 2i(1- 0) = 3

9TOT rrpHMep rrOKa3bIBaeT, 'ITOeCJIH l

-

KpHBM B 06JIacTH D C Ha'la.rrb-

HOil: TO'lKOil:Z1

H KOHe'lHoil:TO'lKOil:Z2, a J(z) He aHa.rrHTH'IeCKM<PYHKD:HH B

D, TO HHTerpa.rr

!J(z) dz,

 

 

 

 

 

 

 

 

I

Boo61I1e rOBopH, 3aBHCHT He TOJIbKO OT TO'leKZ1 H Z2, a TaIOKe H OT BH.n:a

KPHBOil: l.

 

7.3.2.

BbI'IHCJIHTbHHTerpa.rr

 

 

J = !<iz + z2) dz,

 

 

I

 

 

r.n:e l - '1acTbOKP}')KHOCTHIzI = 2, arg z E [~, 'IT] .

Q TaK Kax .n:JIH Bcex TO'leKl BbIIIOJIHHeTCH paBeHcTBo r

= Izl = 2 (pHC. 105),

TO

 

 

 

z = rei'P = 2ei'P, z = 2e- i'P, Z2 = (2e i'P)2

= 4ei.2'P,

455

 

dz = d(2ei'l')

= 2iei'l'd<p,

<p = arg z E [~,7r] .

 

OTCIO,ll;a IIOJIY'IaeM:

 

 

 

 

 

J =

!~ (i . 2e- i'l' + 4e2i'l') 2ie i'l' d<p =

!~ (i2

. 4e-i'l'+i'l' + 8ie2i'l'+i'l') d<p

=

 

~

 

~

 

 

 

 

2

 

2

 

.

 

~

 

~

 

~

 

= !

(-4 + 8ie3i'l') d<p = -4 ! d<p + 8i !

e3i'l' d<p = -4<P1: + 8i· e;:'I'I: =

~

 

~

~

 

2

2

222

 

 

= -4 (7r - ~)+i(e3i~_e3i~) = -4·~+i(-I-(-i)) = -27r-i+ii.

 

y

 

 

 

 

 

 

 

x

 

 

 

 

 

Puc. 105

 

 

 

Puc. 106

 

7.3.3.BbI'IJilCJIJilTb JilHTerpaJI

J = !Sinzdz,

I

r,ll;e 1 - oTpe30K IIpjlMofi OT TO'IKJiI 0 ,ll;O TO'IKJiI 7r + i7r.

Q TaK KaK BCIO,IJ;y Ha 1HMeeM y = X (PJilc. 106), asinz=sinxchy+i cosxshy

(CM. 3a,IJ;a'IY

7.1.1), TO

 

 

J= !(SinxChy+icosxShy)d(x+iy) =

 

I

 

 

 

~

 

~

 

= !(sinxchx + icosxshx) d(x + ix) = !(sinxchx -

cosxshx) dx+

o

 

0

 

 

~

 

 

 

+ i !(sinxchx + cosxshx) dx = (J1 -

h) + i(JI + J2 ),

 

o

 

 

r,ll;e

~

~

 

 

Jl = ! sinxchxdx;

J2 = ! cosxshxdx.

 

o

0

 

IIpJilMeHjIjI ,ll;BroK,ll;bI <POPMYJIY HHTerpHpOBaHHjI IIO 'IaCTjlM JiI Y'IJilTbIBM, 'ITO d(sinx) = cosxdx, d(cosx) = -sinxdx, d(shx) = chxdx, d(chx) = shxdx,

Hafi,ll;eM J1 JiI J2:

456

n n

J1 = jSinxd(shx) = sinxshxl: -

jshx d(sin x) =

 

 

 

o

 

0

 

 

 

 

 

n

 

n

 

 

 

= sin 11" sh 11" - sinOshO - j shxcosxdx = 0 - j cosxd(chx) =

 

 

o

 

0

 

 

 

= -(cosxchxl: - jChXd(COSX») = -(cos1l"ch1l"-cosOchO)+

 

o

 

 

 

 

 

 

n

 

 

n

 

 

 

+ j ch x( - sin x) dx = - (-1 . ch 11" -

1 . 1) - j sin x ch x dx =

 

o

 

 

0

 

 

 

 

 

 

 

=

ch1l" + 1- J1,

OTKY,Il;a 2J1 = ch 11" + 1, CJIe,Il;OBaTeJIbHO, J1 =

~(ch11" + 1).

 

 

 

AHaJIOrH'IHO IIOJIY'IaeM

 

 

 

 

 

 

n

 

n

 

 

 

 

h = j cosxd(chx) = cosxchxl: -

j chx d(cosx) =

 

 

 

o

 

0

 

 

 

 

 

n

 

 

n

sin x d(sh x) =

= cos 11" ch 11" - cos 0 ch 0 +

j ch x sin x dx =

- ch 11" - 1 +

j

 

o

 

 

0

 

 

 

 

 

n

 

 

 

=-Ch1l"-I+sinxshxl: -

jshxd(sinx) =

 

 

 

 

o

 

 

 

 

 

n

 

 

 

 

= - ch 11" - 1 + (sin 1I"sh 11" -

sinOshO) - j shxcosxdx =

-

ch1l" - 1 -

J2 ,

 

 

o

 

 

 

 

oTKY,Il;a 2h = -(ch 11" + 1), T. e. h =

-~(ch11" + 1) = -J1 .

 

 

 

llTaK,

 

 

 

 

 

 

J = j sin z dz = (J1 -

J2) + i( J1 + J2) = 2J1 + i . 0 = ch 11" + 1.

I

7.3.4.BbI'IHCJIHTb HHTerpaJI

J = jzkdz,

I

r,Il;e:

a) 1 - OKPY)I{HOCTb Izl = 1, arg z E [0,211"] (TO'lKa z cOBepIIIaeT IIOJIHblfi 060pOT IIO OKPJ)KHOCTH Izl = 1);

6) 1 - OKPY)I{HOCTb Izl = 1, argz E [0,411"] (TO'lKa z COBepIIIaeT ,Il;Ba IIOJIHbIX o6opoTa IIO OKPY)I{HOCTH Izl = 1).

Q TaK KaK MH Bcex TO'leK 1BbIlIOJIHHeTCH paBeHcTBor = Izl = 1 (pHC. 107),

TO

z = reicp = eicp , zk = eikcp , dz = d(eicp ) = ieicp dcp.

457

y

x

1

 

 

 

 

 

 

 

Puc. 107

 

 

 

a) BblqHCJIHM HHTerpa.rr IIpH cp = argz E [0,211"]:

 

 

 

 

271"

 

 

271"

 

 

 

 

 

J =

 

/

eikcp . ieicp dcp = i

/ ei(k+1)cp dcp =

 

 

 

 

 

o

 

 

0

 

 

 

 

 

= {i

1:0 dcp = iCPI:7I" = 211"i,

IIpH k + 1 = 0, T. e. k = -1;

 

 

.ei(k+1)cp 1271" __1_ ( i(k+1)·271" _

i(k+1)'O)_

0,

IIpH k + 1 :f. O.

 

 

zi(k + 1) 0

-

k +

1 e

 

e

-

 

 

/~ = 211"i

(B cJIyqae k = -1), H

/

zk dz = 0

(IIpH k :f. -1),

 

 

I

 

 

 

 

 

I

 

 

 

B qacTHOCTH,

 

 

 

 

 

 

 

 

 

/

zdz = /z 2 dz = /zlOdz = /dz dz = /dz dz = /

dz dz = O.

 

 

 

 

 

 

z2

 

z3

 

ZIOO

 

I

 

I

 

I

 

I

 

I

I

 

6) BblqHCJIHM HHTerpa.rr IIpH cp = arg z E [0,411"]:

 

 

 

 

471"

 

 

471"

 

 

 

 

 

J =

 

/

eikcp . ieicp dcp = i

/ ei(k+1)cp dcp =

 

 

 

 

 

o

i j:o dcp = iCPI:7I"

0

 

 

 

 

 

 

 

 

= 411"i,

IIpH k = -1;

 

 

= { ie~(k+1)CP1471"

= _1_ (e i(k+1).471"

_ ei(k+1).O)

= 0

IIpH k:f. "":l.

 

 

 

i(k + 1)

0

k + 1

 

 

 

'

 

TaKHM 06P3.30M, ,rr,JUI

TaKoit KPHBOit 1 IIOJIyqHM

 

 

 

 

 

/d: = 411"i

(B cJIyqae k = -1) H

/

zk dz = 0

(IIpH k:f. -1).

 

 

 

I

 

 

 

 

I

 

 

 

458

7.3.5. I1CIIOJIb3YH aHaJIHTH'IHOCTbIIO,n;bIHTerpaJIbHOfi <PYHKII,HH, BbI'IHC-

JIHTb HHTerpaJI

 

 

 

 

!sinzdz,

 

 

 

 

 

I

 

a

 

r,n;e l - OTpe30K IIPHMOfi OT TO'IKH0 ,n;o TO'IKHrr + irr.

c'[)YHKIJ;HHsin z -

aHaJIHTH'IeCKMHa Bcefi KOMIIJIeKCHOfi IIJIOCKOCTH C, a

<pyHKIJ;HH ( - cos z),

O'IeBH,n;Ho,HBJIHeTCH IIepBo06pa3Hofi ,n;JIH sin z B C, CJIe-

,n;OBaTeJIbHO,

 

 

 

 

 

 

1I"+i1l"

= -(cos(rr + irr) -

cosO) =

 

!sinzdz = (-cosz) 10

 

I

[T. K. cos(x

+ iy) = cosxch Y -

i sinx sh y]

 

 

 

 

= - (cos rr ch rr - i sin rr sh rr - 1) = - (- ch rr - 1) = ch rr + 1

(cpaBHHTe C 3a,n;a'Iefi7.3.3).

 

7.3.6.

BbI'IHCJIHTbHHTerpaJI

f z+zz2 dz.

I

110 3aMKHYTofi KPHBOfi l, HCIIOJIb3YH <POPMYJIbI (3.4), (3.5) HJIH (3.6)

(06xo,n; KPHBOfi ocym;eCTBJIHeTCH IIpOTHB 'IacoBofiCTpeJIKH). a) l: Izl = ~; 6) l: Iz + il = 1.

a a) TaK KaK <PYHKIJ;HH

Z2

z+i

aHaJIHTH'IHaHa Bcefi KOMIIJIeKCHOfi IIJIOCKOCTH C, KpOMe TO'IKH-i, KOTOPM He JIe:>KHT BHYTPH OKPY:>KHOCTH Izl = ~ H Ha 9Tofi OKPY:>KHOCTH, TO 110 TeopeMe

KOllm (3.4) IIOJIY'IHM:

f z+zz2dz.

= o.

 

 

 

Izl=~

 

 

6) TaK KaK <PYHKIJ;HH j(z) = Z2 aHaJIHTH'IHaHa Bcefi KOMIIJIeKCHOfi IIJIOC-

KOCTH C, H TO'IKaZo =

- i JIe:>KHT BHYTPH OKPY:>KHOCTH Iz + il = 1, TO 110

IiHTerpaJIbHOfi <popMYJIe KOIIIH (3.5) IIOJIY'IHM:

 

 

1

!

Z2

 

j(zo = -z). = -2.

-- . dz,

 

 

rrz

 

z + z

 

 

Iz+il=l

 

OTKy,n;a

 

 

 

 

f ·Ldzz+z = 2rri· j(zo = -i) = 2rri· (_i)2 = 2rri· (-1) = -2rri. •

IZ+il=l

 

 

 

7.3.7.

BbI'IHCJIHTbHHTerpaJI

 

 

459

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]