Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Сборник задач по высшей математике 2 том

.pdf
Скачиваний:
63
Добавлен:
15.03.2015
Размер:
27.38 Mб
Скачать

 

iz

~t

-iz

=

1

 

 

 

 

 

 

1

 

e-ix+ y) =

r) sinz = e

 

 

2i (ei(X+iY) - e-i(X+iY)) = 2i (e iX - Y -

= ii (e-Y(cosx + isinx) -

eY(cos(-x) + isin(-x))) = -~(cosx(e-Y - eY) +

. .

_

) .

 

eY -

2

e-Y

.

 

eY

+ e-Y

.

 

.

+zsmx(e

Y+eY)

 

=

zcosx·

 

 

+smx'

 

2

= smxchy+zcosxshy,

T.e. u(x,y) = sinxchyj v(x,y) = cosyshy.

 

 

 

 

/I.1tSI. OaHHb/,X rjJYH'IC'U,ufJ. HafJ.mu ux oefJ.cmeume.llibHY'lO "tacm'b u(x, y)

u .MHUMy'lO

"tacm'b v(x,y):

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.1.2.

z.

 

 

 

 

 

 

 

 

7.1.3.

iz.

 

 

 

7.1.4.

(Z)2.

 

 

 

 

 

 

 

 

7.1.5.

Z2 -

2z + i.

 

7.1.6.

z3.

 

 

 

 

 

 

 

 

7.1.7.

Rez+ilmz.

 

7.1.8.

z+z.

 

 

 

 

 

 

 

 

7.1.9.

l+i

 

 

 

 

 

 

 

 

 

 

-- . ,

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

z-z

 

 

7.1.10.

 

 

 

 

 

 

 

 

7.1.11.

 

1

 

 

Z2'

 

 

 

 

 

 

 

 

z- z'

 

 

7.1.12.

eZ.

 

 

 

 

 

 

 

 

7.1.13. e-iz .

 

 

7.1.14.

shz.

 

 

 

 

 

 

 

 

7.1.15.

sin(2z).

 

 

7.1.16.

cosz.

 

 

 

 

 

 

 

 

7.1.17.

ilnz.

 

 

7.1.18.

In(z2).

 

 

 

 

 

 

 

7.1.19.

sh(z + i).

 

 

7.1.20.

,lJ;JIf! gaHHoii <PYHKII,HH J(z), rge z = rei'P, HaiiTH IJ(z)1 H ArgJ(z):

 

a) J(z) = Z2 j

 

 

 

 

 

 

6) J(z) = t

 

 

 

B) J(z) = eZ

 

 

 

 

 

 

 

 

z

 

 

 

 

 

 

 

 

 

 

 

 

 

 

o a) MMeeM Z2 = (rei'P)2 = r2 . ei .2'P.

 

TaK KaK

lei'P I

1 Mf! JIlo6oro

geiicTBHTeJIbHoro cp,

 

a Arg(ei'P) = cp + 27rk, k

E Z, TO

 

 

 

 

 

IZ21 = r2,

Arg(z2) = 2cp + 27rk,

k E Z.

 

6) TaK KaK ~ =

 

1

= _1_. =!. ei'P, TO

 

 

 

 

 

z

 

 

rei'P

re-''P

r

 

 

 

 

 

 

 

 

 

I~I= ~,

Arg G) = cp + 27rk,

k E Z.

 

B) IIoCKOJIbKY eZ = ex+ iy = eX . eiy = er cos 'P . eir sin 'P,

TO

 

leZI=ercos'P, Arg(eZ)=rsincp+27rk, kEZ.

 

 

/I.1tSI. OaHHb/,X rjJYH'IC'U,UfJ. J(z) HafJ.mu

IJ(z)1

u ArgJ(z):

 

 

7.1.21.

 

 

 

 

 

 

 

 

 

7.1.22.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.1.23.

 

 

 

 

 

 

 

 

 

7.1.24.

 

 

 

 

7.1.25.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7.1.26.OnpegeJIHTb <PYHKIJ;HIO J(z), rge z = X + iy, eCJIH Re J(z) = X H

o

ImJ(z) = -Yo

 

 

 

TaK KaK Z = X + iy, a z = X -

iy, TO Z + z = 2x, z -

z = 2iy, oTKyga

 

z+z

z-z

.z-z

(1.2)

 

X = -2-'

Y = ~

= -z-2-'

440

CJIe,llpBaTeJIbHO, J( Z)

.

 

z + Z . z - z

z + z

z - z

- u

= x - zy = - 2 - - z· 2i

= - 2 - -

- 2 - =

Z. nTaK,

J(Z) = Z.

 

 

 

 

 

 

 

 

 

 

 

7.1.27.

Onpe.D:eJIHTb q,YHKU.HIO J(z), r.D:e z = x+iy, eCJIH Re J(z) = eX cosy

 

H 1m J(z) = eX sin y.

 

 

 

 

 

 

 

o I1MeeM:

 

 

 

 

 

 

 

 

 

 

 

J(z) = eX cosy + iex siny = eX (cos y + i siny) = eX. eiy

= ex +iy

= eZ

,npyroit cnoco6: BOCnOJIb3yeMcH paBeHCTBaMH (1.2) H (1.1). Tor.D:a

 

 

 

 

 

Z+z

z-z

z+z

z-z

 

 

J(z) = eX cosy + i· eX siny = e-2- cos 2i + i· e-2- sin 2i =

 

 

 

z+z (1 (t.z-z

t.z-Z)

1(t.z-z

 

t.z-Z))

=

= e-2-

'2

e

2'i" +

e-

2'i"

+ i . 2i

e 2'i" - e- 2'i"

 

1 z+z (Z-Z

 

_z-z

+ e

z-z

_Z-Z)

1

z+z

z-z

 

= '2e 2

e

2

+ e 2

2 -

e 2

= '2e

2

·2e 2

= eZ

Onpeoe.!!um'b tPYH'lCqUto J(z),

zoe z = x + iy, no 3aOaHH'btM Re J(z) = u(x, y)

u ImJ(z) = v(x,y):

 

 

 

 

 

 

 

 

 

7.1.28.u = -y, v = x. 7.1.29. u = x2 - y2, V = 2xy.

7.1.30. u =

x , v =

y .

x2

+ y2

x2 + y2

7.1.31.u = chycosx, v = -shysinx.

7.1.32.

RaitTH 3Ha'leHHe q,YHKU.HH Z -

~ B TO'lKe 3 + 2i.

 

 

o I1MeeM:

 

 

 

 

 

-- .

1

.

3 - 2i

. 3 - 2i

=

 

3 + 2z -

3 + 2i = 3 -

2z -

(3 + 2i)(3 _ 2i) = 3 - 2z - 9 + 4

 

 

 

= (3 - 13) + i (-2 + 13) = ~~ -

i~.

 

 

 

3

2

 

 

7.1.33.BbI'lHCJIHTb 3Ha'leHHe Z5 B TO'lKe

.;2 ..;2 zO=T+zT'

3anHcaTb OTBeT B anre6paH'leCKoit, TpHroHOMeTpH'leCKoit H nOKa3aTeJIbHoit q,0PMax.

o TaK KaK BbI'lHCJIeHHe 3Ha'leHHH

(V; +iV;r

Henocpe.D:CTBeHHo B anre6paH'leCKoit q,opMe .D:OBOJIbHO TPY.D:OeMKO, 3anHmeM

.'11"

'iHCJIO Zo B nOKa3aTeJIbHoit q,0pMe: Zo = 1· et '4 (CM. pHC. 102); OTCIO.D:a CJIe-

.D:YeT, 'ITO

5

(1

(!£.) 5

=e

i 5'11"

511'· . 511'

.;2 ..;2

zo=

 

·e 4

4 =cosT+ZSlllT=-T-ZT=-zo.

 

441

y

x

Puc. 102

7.1.34.Bbl'lHCJIHTb sin(1I" + i).

Q TIOJIb3YflCb q,opMYJIaMH (1.1), nOJIY'IHM

sin(1I"+i) = ii(ei (71+i) _e- i(7I+i)) = ii(e-Hi7l-el-i7l) =

ii (e-1 ei71 -

e1 e-i7l ) =

ii (e- 1 (cos 11" + i sin 11") - e1 (cos (-11") + i sin( -11")))

=

1

 

1

1

-2e

-1

=-i·sh1.

=2i(e- 1 .(-1+0)-e1 .(-1+0))=i· e

 

B'bt"tuc.IIum'b

3Ha"teHWI

tPYH'lCqUU J (z) 6 mO"t'ICax

ZI,

z2' B

3aoa"tax 7.1.37-

7.1.38 om6em 3anUCam'b 6 nO'ICa3ame.ll'bHoit, mpU20HO.Mempu"teC'lCoit U a.ll2e6pau"tec'lCoit tP0p.Max.

7.1.35.J(z) = Z2 - 2z + i, ZI = -2 + 3i, Z2 = 4 - 3i.

7.1.36.J(z) = ~ - 2i, ZI = 1 - i, Z2 = 4.

7.1.37.

J(z) =

1;1' ZI

 

= 2 + 2i, Z2 = 2ei I.

 

7 1 38

J() -

7

-

1

. v'3

-

71n2 (

11" .. 11")

•••

z -

z , ZI

-

2" -

t 2""'Z2 -

V~

cos "4 + t sm"4 .

7.1.39.J(z) = eZ, ZI = 1 +i, Z2 = In2 -101I"i.

7.1.40.J(z) = chz, ZI = ~i, Z2 = In3 + i~.

7.1.41.J(z) = In(iz), ZI = -1, Z2 = 1.

7.1.42.J(z) = COSZ, ZI = 211" - i, Z2 = 211"i.

p'.IISI. OaHH'btX tPYH'lCqUit J(z), 20e z = x + iy, Haitmu ux oeitcm6Ume.ll'bHY?O "tacm'b u(x,y) u .MHU.MY?O "tacm'b v(x,y):

7.1.43.

iz 2.

7.1.44.

(Z)3 + 2i - 1.

7.1.45.

Re(z2) + i Im( (Z)2).

7.1.46.

z+1

z - i'

 

z 'Iz -II-

 

7.1.47.

7.1.48.

i cos(z - i).

442

7.1.49.

sh(iz2 ).

7.1.50.

7.1.51.

tgz.

 

4.!I.R aa'H'H,'btX fPY'H'IC'Il,u'fJ, J(Z), aae z = rei<p, 'Ha'fJ,mu IJ(z)1 u ArgJ(z):

7.1.52.

oz, r,ll;e 0 E lR.

7.1.53. z . pe iO , r,ll;e p, (J E lR.

7.1.54.

1

 

n' r,ll;e n E N.

 

 

z

 

Onpeae.n.um'b fPY'H'IC'Il,u?O J(z), aae z = x + iy, no 3aaa'H'H'bt.M ReJ(z) = u(x,y) u ImJ(z) = v(x,y):

7.1.55.

x 2

- y2

 

1

 

u=

+ y2)2'

v= --

 

 

(x2

 

2xy'

 

7.1.56.

U = x 3 -

3xy2,

V = y3 - 3x2y.

7.1.57.

x 2 + y2 + 1

x 2 + y2 - 1

U=X

 

,v=y

+ y2

 

x2 + y2

 

x2

BwtUc.!!um'b 3'Ha"l.e'HUe fPY'H'IC'Il,UU J(z) 6

mO"l.'lCe Zo:

7.1.58.

J(z) = z + 11, Zo = -2 + i.

 

 

z-

 

 

 

7.1.59.

J(z) = (Z)2. Imz, Zo = 1- 2i.

7.1.60.

J(z) = 16 , Zo = 1 -

iV3.

 

 

z

 

 

 

7.1.61.J(z) = 2i sin 2iz, Zo = -l.

7.1.62.J(z) = sh(z + i), Zo = 2 - i.

KOHTponbHble Bonpocbl M 60nee cnmKHble 3aW-HMH

7.1.63. MorYT JIH Y ,ll;BYX pa3JIHqHbIX cPYHKII.Hit KOMnJIeKCHOro nepeMeH-

Horo 6bITb

a) pa3JIHqHbIe ,ll;eitcTBHTeJIbHbIe qacTH H O,ll;HHaKOBble MHHMble qaCTH;

6) O,ll;HHaKOBbIe ,ll;eitcTBHTeJIbHble qaCTH H pa3JIHqHble MHHMble qaCTH;

B) O,ll;HHaKOBbIe ,ll;eitcTBHTeJIbHbIe qaCTH H O,ll;HHaKOBble MHHMble qaCTH;

r) pa3JIHqHble ,ll;eitcTBHTeJIbHble qaCTH H pa3JIHqHble MHHMble qaCTH?

7.1.64. BepHO JIH, 'ITOeZ '"0 npH JIl060M z E C? 7.1.65. PemHTb YPaBHeHHe sinz = O.

7.1.66. CYIII.eCTBYIOT JIH TaKHe TOqKH z E C, 'ITOIcos zl > I? 7.1.67. BepHo JIH, 'ITOcPYHKII.HH sin z He OrpaHHqeHa Ha C?

7.1.68. HaitTH Bce TaKHe TOqKH z E C, B KOTOPbIX 3HaqeHHH cPYHKII.HH eZ qHCTO MHHMble.

443

7.1.69.B03MOlKHO JIH O,!l;H03HaqHO 3a,r:J;aTb <PYHKll,HIO f(z), eCJIH H3BeCTHO, 'ITO

a) If(z)1 = Izl, Ref(z) = Rez (npH Rez > 0);

6) Argf(z) = Argz, Ref(z) = Rez (npH Rez > O)?

§ 2. AHAnLt1TLt1'-1ECKLt1E«1»YHKLI,Lt1Lt1

TIYCTb <PYHKI1,HH J(z) onpe,ll;eJIeHa B HeKoTopoil: OKpeCTHOCTH TOqKH Zo KOM-

nJIeKcHoil: nJIOCKOCTH.

~ IIpoU360ihl,o(J, !'(zo) <PYHKI1,HH J(z) B TOqKe Zo H83bIBaeTCH npe,ll;eJI

r

J(zo + ~z) -

J(zo) -

J'(

)

l>.!~o

~z

-

 

Zo,

eCJIH OH CYII1,eCTByeT H KOHeqeH.

~ECJIH CYII1,eCTByeT npOH3BO,ll;HaH !'(zo), TO <PYHKI1,HH J(z) Ha3bIBaeTCH aurjJrjJe-

pe'HtjupyeMO(J, B TOqKe ZOo ~

MHOlKeCTBO D TOqeK pacmHpeHHoil: KOMllJIeKcHoil: nJIOCKOCTH IC U {oo} Ha3bl-

BaeTCH 06J1aCm'b1O, eCJIH

1)MHOlKeCTBO D OTKPblTO, T. e. ,!l;JIH KalK,ll;Oil: TOqKH, npHHa,!l;JIelKaII1,eil: D, cyII1,e- cTByeT oKpecTHocTb 3TOil: TOqKH, npHHa,!l;JIelKaII1,aH D;

2)MHOlKeCTBO D CBH3HO, T. e. JII06ble ,ll;Be TOqKH H3 D MOlKHO COe,ll;HHHTb HenpepblBHoil: KPHBOil:, Bce TOqKH KOTOPOil: npHHa,!l;JIelKaT D.

~<l>YHKI1,HH J(z) Ha3bIBaeTCH a'Ha./Iumu'l.eclGo(J, 6 o6J1acmu D, eCJIH OHa ,ll;H<p<pe-

peHI1,HpyeMa B KalK,ll;Oil: TOqKe 3TOil: 06JIacTH.

~

<l>YHKI1,HH J(z) Ha3blBaeTCH a'HaJlumu'l.ecIGo(J, 6

mO'l.IGe zo, eCJIH OHa ,ll;H<p<pepeH-

I1,HpyeMa B KalK,ll;Oil: TOqKe HeKoTopoil: OKpeCTHOCTH TOqKH ZOo

TeopeMa 7.1. .oIlR Toro, 'Ho6blcl>YHK~~R

J(z) = u(x, y) + iv(x, y) (z = x + iy)

6bllla A~cI>cI>epeH~~pyeMa

B TO'lKeZo = x() + iyo, AOCTaTO'lHO, 'lTo6bl

1) 'laCTHblenpO~3BOAHble

 

 

 

au(x, y)

au(x,y)

av(x,y)

av(x, y)

ax

ay

ax

ay

cy~ecTBoBall~ ~ 6blll~ HenpepblBHbl B HeKoTopoili OKpeCTHOCT~ TO'lK~ ,(xo, yo) (KaK cl>YHK~~~ AByX AeilicTB~TenbHblx nepeMeHHblX x ~ y);

2) B TO'lKe(xo, Yo) 6blll~ BblnOIlHeHbl ycnoBVl1I KOWVI-PVlMaHa

au(x,y)

av(x,y)

au(x, y)

av(x, y)

ax

=-:,....:..::..:.

ay

(2.1)

ay

ax

3aMeTHM, qTO yCJIOBHH KomH-PHMaHa HBJIHIOTCH Heo6xo,ll;HMblMH ,!l;JIH ,ll;H<p<pepeHI1,HpOBaHHH <PYHKI1,HH J(z) B TOqKe Zo = xo + iyo.

444

B rrOJIHpHhIX KOOp,o;HHaTax (r, rp) yCJIOBHH KOIlIH-PHMaHa 3arrHChIBaIOTCH CJIe- !1YIOIII;HM 06pa30M:

au(r, rp)

1 av(r, rp)

av(r,rp)

1 au(r, rp)

 

-a~r:"":"":'"

=;: arp

or

= -;: arp

(2.2)

ECJIH cYIII;ecTByeT rrpoH3Bo,o;HaH J' (z), TO ee MO)KHO 3arrHcaTb O,o;HHM H3 CJIe.o;y- IOIII;HX crroc060B:

HJIH

J'(z) = !. (au + iaV) = !

(av _ iaU) .

z

or or

z

arp arp

,[VIH rrpoH3Bo,o;HhIX OT <PYHKII;Hit KOMrrJIeKcHoro rrepeMeHHoro HMeIOT MeCTO rrpaBHJIa, aH8JIOrH'IHhIecooTBeTcTBYIOIII;HM rrpaBHJIaM ,o;JIH rrpoH3Bo,o;HhIX OT <PYHKII;Hit ,o;eitcTBHTeJIbHOrO rrepeMeHHoro. A HMeHHO: eCJIH B TO'lKe z CYIII;eCTBYIOT rrpOH3Bo,o;HhIe J'(z) H g'(z), TO CYIII;eCTBYIOT H rrpOH3Bo,o;HhIe (C. J(z))', (J(z) ± g(z))', (J(z)· g(z))', (J(z)/g(z))', rrpH'IeMBbIIIOJIHHIOTCH CJIe.o;yIOIII;He paBeHCTBa:

(C· J(z))' = J'(z)', r,o;e C E C,

(J(z) ± g(z))' = J' (z) ± g' (z),

(J(z). g(z))' = J'(z)· g(z) + J(z)· g'(z),

( J(Z))'

J'(z)· g(z) - J(z)· g'(z) (rrpH g(z) #- 0).

g(z)

l(z)

ECJIH <PYHKII;HH J(z) - aH8JIHTH'IeCKaHB 06JIacTH D, TO ee ,o;eitcTBHTeJIbHaH

'1acTb u( x, Y) H MHHMaH

'1aCTb v( x, Y) HBJIHIOTCH <PYHKII;HHMH, ZapMOH.U"'I.eCICUMU

B D. 3TO 3Ha'lHT,'ITOY K~,o;Oit H3 <PYHKII;Hit u(x, Y) H V (x, Y) CYIII;eCTBYIOT HerrpephIBHhIe B D '1acTHhIerrpOH3Bo,o;Hble 2-ro rropH,o;Ka, H ,o;JIH Ka)K,o;oit H3 HHX BepHo ypa6H.eH.Ue JIanllaca

r,o;e 6. - orrepaTop JIarrJIaca (CM. c. 243). ECJIH <PYHKII;HH u(x, y) (<pYHKII;HH v(x, y))

HBJIHeTCH rapMOHH'IeCKoit B HeKoTopoit

06JIacTH D (Bo06III;e rOBopH, O,o;HOCBH3-

HOit5 ), TO CYIII;ecTByeT aH8JIHTH'IeCKaHB

D <PYHKII;HH J(z) C ,o;eitcTBHTeJIbHoit '1a-

CTbIO u(x, y) (COOTBeTCTBeHHO, C MHHMOit '1aCTbIOv(x, y)), orrpe,o;eJIHeMaH C TO'lHO-

CTb~ ,0;0 rrOCTOHHHoro CJIaraeMoro.

7.2.1. HaitTH TO'lKH,B KOTOPhIX Cyrn;ecTByeT npOH3BO,n:HaJI <PYHKll,HH eZ ,

H BhI'IHCJIHTb9Ty npOH3BO,n:HYIO.

5To eCTb OrpaHHQeHHoit 3aMKHYToit HecaMonepeceKalOIIIeitcH JIHHHeit. 06JIacTH, onUCbI-

BaeMbIe B npuBoAuMbIX AaJIee 3a.D,aQax, HBJIHIOTCH OAHOCBH3HbIMU.

445

a TaK KaK (CM. 3a,u.a'lY7.1.1 B) eZ = eX cos y + i . eX siny, TO

u(x, y) = eX COS y, v(x, y) = eX sin y.

HaiI:.D:eM 'IaCTHblerrpOH3BO.D:Hble g~, g~, g~, g~ H BbUICHHM, B OKpeCTHO-

CTj(X KaKHX TO'leKOHH cym;eCTBYIOT H HerrpepbIBHbI, a TaK:lKe B KaKHX TO'lKaX rrJIOCKOCTH BbIIIOJIHj(IOTCj( YCJIOBHj( KOIlIH-PHMaHa (2.1):

au = .Q. (eX cos y) = eX cos y

'

av = .Q. (eX sin y) = eX cos y

ax

ax

ay

ay

,

T. e. g~ = g~ .D:JIj( JIlO6bIX .D:eiI:cTBHTeJIbHbIX x

H y, H 3TH 'IaCTHblerrpOH3BO.D:-

Hble HerrpepbIBHbI BO Bceil: rrJIOCKOCTH ]R2; KpOMe Toro,

 

au = .Q. (eX cos y)= _ex sin y

av = .Q. (eX sin y) = eX siny

ay

ay

 

, ax

ax

'

T. e. g~ = - g~ .D:J!j('JII06bIX.D:eil:cTBHTeJIbHbIX x H y, H

3TH 'IaCTHblerrpOH3-

BO.D:Hble HerrpepbIBHbI BO Bceil: rrJIOCKOCTH ]R2.

TaK KaK YCJIOBHj( KOIlIH-PHMaHa (2.1) BbIIIOJIHj(IOTCj(.D:J!j( JIlO6oil: rrapbI

.D:eil:cTBHTeJIbHbIX'IHCeJI(x, y), H 'IaCTHblerrpOH3BO.D:Hble g~, g~, g~, g~ CY- m;eCTBYIOT H HerrpepbIBHbI B OKpeCTHOCTH JIlO6oil: TO'lKH(x, y), TO rrpOH3BO.D:-

HM f' (z)

cym;ecTByeT B JIlO6oil: TO'lKez = x +iy KOMrrJIeKcHoil: rrJIOCKOCTH Co

HaiI:.D:eM 3Ty rrpOH3BO.D:HYIO:

 

 

 

l'(z)

= g~ + i

g~ = eX cos y + i . eX sin y = eX (cos y + i sin y) = eZ.

IhaK, f'(z) = (e z )'

= eZ

(Vz E C).

 

7.2.2.

YKa3aTb 06JIacTb .D:H<p<pepeHIJ;HpyeMocTH <PyHKIJ;HH J(z) = Z H BbI-

 

'IHCJIHTbrrpOH3BO.D:HYIO.

 

 

a TaK KaK Z = X -

iy, TO u(x,y) = x, v(x,y) = -y H

 

 

au = ax = 1

av = a( -y) = -1

 

 

ax

ax

'ay

ay

.D:JIj( JIlO6bIX .D:eil:cTBHTeJIbHbIX x

H

y. CJIe.D:OBaTeJIbHO, g~ = 1 =I -1 = g~,

H rrepBoe H3 .D:ByX YCJIOBHiI: KOllH-PHMaHa (2.1) He BbIIIOJIHj(eTCj( HH .D:J!j(

KaKOil: rrapbI .D:eil:cTBHTeJIbHbIX 'IHCeJI(x, y). 3Ha'lHT,<PYHKIJ;Hj(

J(z) = Z He

.D:H<p<pepeHIJ;HpyeMa HH B KaKoil: TO'lKez E Co

 

7.2.3.

Hail:TH TO'lKH,B KOTOPbIX cym;ecTByeT rrpOH3BO.D:HM

<PyHKIJ;HH i,

 

H BbI'IHCJIHTb3Ty rrpOH3BO.D:HYIO.

 

 

a Cnoco6 1. TaK KaK

 

 

 

 

 

 

 

 

J(z) = 1 = _1_ =

x - iy

 

 

 

z

x

+ iy

(x + iy)(x - iy)

 

 

TO

 

 

 

 

 

 

 

 

 

u(x,y)=

 

X

 

v(x,y) = - 2

y

 

 

2

2'

 

 

 

 

x

+y

 

X

+y

 

446

(0,0).
x 2+y2 =I O.
=I O.

lIafi,ll;eM qaCTHble rrpOH3BO,ll;Hble ~~, ~~, ~~, ~~ H BbIHCHHM, B OKpeCTHo-

CTHX KaKHX TOqeK OHH Cyrn;eCTBYIOT H HerrpepbIBHbI, a TaIOKe B KaKHX TOqKax BbIII031HHIOTCH yC310BHH KorrIH-PHMaHa (2.1):

aX.(X2+y2)_.Q.(x2+y2)·x

~~ = tx ( X2: y2 ) = "","a,:;;,x---(-X-2-+---""'-~~;)""'2----

(x 2 + y2) - 2x . X

 

(x2 + y2)2

ay . (x2 + y2) _

.Q.(X2 + y2) . Y

ay

ay

~--------~--~~-------=

(x2 + y2)2

(x 2 + y2) - 2y . Y

(x2 + y2)2

T. e. ~~ = ~~ ,ll;31H 31I060fi rrapbI ,ll;efiCTBHTe31bHbIX qHCe31 (x, y), eC31H x 2+y2 =I

8TH qaCTHble rrpOH3BO,ll;Hble cyrn;eCTBYIOT H HerrpepbIBHbI B OKpeCTHOCTH KaJK,ll;ofi TOqKH rr310CKOCTH 1R?, 3a HCK31lOqeHHeM TOqKH (0,0) . .naJIee,

2xy

av a(

y)

ax = ax

- x 2 + y2

T. e. ~~ = - ~~ AJIH 31I060fi napbI ,ll;efiCTBHTe31bHbIX qHCe31 (x, y), eC31H

8TH qaCTHble npOH3BO,ll;Hble cyrn;eCTBYIOT H HerrpepbIBHbI B OKpeCTHOCTH KaJK,ll;ofi TOqKH H3 ]R2, 3a HCK31lOqeHHeM TOqKH

TaK KaK yC310BHH KorrIH-PHMaHa (2.1) BbIII031HHIOTCH AJIH 31I060fi rrapbI

,ll;eiI:cTBHTe31bHbIX qHCe31 (x, y), KpOMe napbI (0,0), H qacTHble rrpOH3BO,ll;Hble

au au av av

ax' ay' ax' ay cyrn;ecTBylOT H HerrpepbIBHbI B oKpecTHocTH 31I060fi TOqKH

113 ]R2 \ {(0, O)}, TO npOH3BO,ll;HaH l'(z) cyrn;ecTByeT B 3110601\ TOqKe z = x +i Y

KOMrr31eKcHol\ rr310CKOCTH C, 3a HCK31lOqeHHeM TOqKH z = O.

447

Cnoco6 2.

Hail:.D:eM 9TY npOH3BO.D:HYIO:

y2 _ X2 + i . 2xy

=

(X2 + y2)2

 

1

1

(x + iy)2

- Z2·

1)'

1

l1TaK, J'(z) = (Z

= - z2 Vz E C, z #- O.

KaK BH.D:HO H3 pemeHHH, HaXO)l{.D:eHHe npOH3BO.D:Hoil: TaKHM cnoc06oM He BnOJIHe O'"leBH.D:HO. B .D:aHHOM npHMepe 60JIee IJ;eJIeC006pa3Ho BbI'"IHCJIeHHe npOH3BO.D:Hoil: B nOJIHpHbIX KOOp.D:HHaTax.

TaK KaK

J()

1

1

1

-i,n

1 (

.. )

1

. (

1.

)

z =-=-,-=-·e

Y=-cos<p-zsm<p =-cos<p+z

--sm<p,

 

z

ret'"

r

 

r

 

 

 

r

 

r

 

TO

 

 

u(r,<p) = ¥cos<p,

v(r,<p) = -¥sin<p.

 

 

 

 

 

 

 

 

 

Hail:.D:eM '"IaCTHblenpOH3BO.D:Hb1e ~~ H ~~:

 

 

 

 

 

 

-OU

= -0 (1-cos<p) = --cos<p,1

-OV

= -0 (

--1sm<p. )

= -1sm<p..

or

or

r

 

r2

or

or

r

r2

 

BbI'"IHCJIeHHe'"IacTHbIXnpOH3BO.D:H bIX Z~ H Z~, a TaK:>Ke npoBepKY YCJIo-

BHiI: KomH-PHMaHa (2.2) npe.D:OCTaBJIHeM '"IHTaTeJIIO.

 

 

 

HaiI:.D:eM npOH3BO.D:H YIO <PYHKIJ;HH J(z) =

i:

 

 

 

 

 

f'(z)

= r. (ou + iOV) = r.

(_-.1 cos<p + i·-.1 sin<p) =

 

 

 

 

z

~

~

z

~

 

~

 

 

 

 

 

 

1 (

cos <p -

.. )

1

 

-i",

= - ,

1

 

1

 

= - -

zsm <p = - - , -- . e

 

 

,= --

 

 

zr

 

 

 

ret'" . r

 

ret'" . ret'"

Z2 .

IIOJIY'"IHJIHTOT)I{e pe3YJIbTaT, '"ITOH npH pemeHHH nepBbIM cnoco6oM.

7.2.4.

YKa3aTb 06JIaCTb

.D:H<p<pepeHIJ;HPyeMocTH <PYHKIJ;HH

J(z)

= zn

 

(n E N) H Hail:TH J'(z).

 

 

 

 

 

 

 

Q TaK KaK

 

 

 

 

 

 

 

 

 

 

 

 

J(z) = zn = (rei",)n = rnein", = rn(cosn<p + isinn<p),

 

TO

 

 

u(r, <p) = rn cosn<p,

v(r, <p) = rn sin n<p.

 

 

 

 

 

 

 

 

 

Hail:.D:eM '"IacTHblenpOH3BO.D:Hb1e ~~, g~, Z~, Z~ H BbIHCHHM, r.D:e OHH cy-

m;eCTBYIOT H HenpepbIBHbI, a TaK:>Ke B KaKHX TO'"lKaxBbIllOJIHHIOTCH YCJIOBHH KOIIIH-PHMaHa (2.2):

OU = ~(rncosn<p) =nrn-1cosn<p,

OV = ~(rnsinn<p) =nrncosn<p,

or or

o<p o<p

,

448

T. e. ~~ =

~g~ )I.JlfI JIlo6oil: rrapbI

qHCeJI (r, <p),

r > OJ 3TH

qaCTHble rrpOH3-

BOp;Hble CymecTByIOT H HerrpepbIBHbI B JII06oil: TOqKe (r, <p) rrpH r

> O. .naJIee,

av = ~(rn sinn<p) = nrn- 1sinn<p,

 

 

 

 

 

 

 

or

or

 

 

 

 

 

 

 

 

 

 

 

T. e. ~~ =

- ~g~ )I.JlfI JII06oil: rrapbI qHCeJI (r, <p),

r > 0; 3TH qacTHble rrpOH3-

Bop;HbIe cymeCTBYIOT H HerrpepbIBHbI B JII06oil: TOqKe (r, <p) rrpH r

> O.

 

 

 

TaK KaK yCJIOBHfI KomH-PHMaHa (2.2) BbIIIOJIHflIOTCfI )I.JlfI JII06oil: rrapbI

t.lHceJI

(r,<p) (rrpH r

> 0) H

qaCTHbIe rrpOH3BO,lJ;Hble ~~, g~,

~~, g~ cyme-

CTBYIOT H HerrpepbIBHbI B oKpecTHocTH KroK,lJ;Oil: TOqKH (r,<p)

(rrpH r > 0),

TO rrpOH3BO,lJ;HafI f'(z) cymecTByeT B JII06oil: TOqKe z = rei'P

KOMrrJIeKcHoil:

ITJIOCKOCTH C (3a HCKJIIOqeHHeM, MOlKeT 6bITb, TOqKH Z = 0).

 

 

 

 

 

Hail:,lJ;eM 3Ty rrpOH3BOP;HYIO:

 

 

 

 

 

 

 

 

f'(z) = (zn), = r. (au +i av ) = -2:,-(nrn- 1 cosn<p + inrn- 1 sinn<p)

=

 

 

z

or

or

re''P

 

 

 

 

 

 

 

 

 

n-l

 

 

~'P.

 

 

 

 

 

 

= ~(cosn<p + isinn<p)

= nrn- 1 . ~ = nrn- 1

e,(n-l)'P =

 

 

 

 

 

e''P

 

 

e''P

 

 

 

= nZn-

 

 

 

 

 

 

 

 

.

)n-l

1

.

 

 

 

 

 

 

= ( re''P

 

 

 

IfTaK,

f'(z) = (zn),

= nzn-l Vz

E C (z =I- 0). TIpoBepKY YCJIOBHiI: KOmH-

PHMaHa (2.1) B TOqKe Z =

0 H BbIqHCJIeHHe rrpOH3BO,lJ;Hoil: <PYHKll,HH B 3TOil:

TOqKe rrpep;OCTaBJIfleM qHTaTeJIIO.

 

 

 

 

 

 

 

,4.M1 oaHHoti tPYH'IC'I.4UU J (z)

Y'lCa3am'b mO~'lCU, 6 'lComOp'btX cyw,eCm6yem

npo-

U3600Ha.R f'(z), U Hatimu npOU3600HY'lO 6 3mUX l1W~'lCax:

 

 

 

 

 

 

7.2.5.

 

J(z) = iz.

 

 

7.2.6.

J(z) = Z + 2i.

 

 

 

 

7.2.7.

 

J(z)=iz 2 -3z+1.

7.2.8.

J(z) = zRez.

 

 

 

 

7.2.9.

 

J(z) = Z6.

 

 

7.2.10.

1

 

 

 

 

 

 

 

 

 

J(z) = 3'

 

 

 

 

 

7.2.11.

J(z) = In(z2).

 

7.2.12.

z

 

 

 

 

 

 

 

J(z) = Ln(z2).

 

 

 

 

7.2.13.

J(z) = chz.

 

7.2.14.

J(z) = sini.

 

 

 

 

 

7.2.15.

J(z) = sin(z + 2i).

7.2.16.

J(z) = cos(iz).

 

 

 

 

7.2.17.

Hail:TH MHO:>KeCTBO TOqeK, B KOTOPbIX <PYHKll,HfI v(x, y) = 2xy - 3

 

 

y,lJ;OBJIeTBOpfleT yCJIOBHIO 6.v = O. Orrpe,lJ;eJIHTb,

cymecTByeT JIH

 

 

aHaJIHTHqeCKafI B HeKoTopoil: 06JIaCTH D <PYHKll,HfI J(z) (z=x+iy),

 

 

P;JIfI KOTOPOil: 1m J = V. ECJIH TaKafI <PYHKll,HfI J(z) cymecTByeT, TO

 

 

Hail:TH ee.

 

 

 

 

 

 

 

 

 

 

Q 1. Hail:p;eM qaCTHble rrpOH3Bop;Hble:

 

 

 

 

 

 

 

 

 

g~ = 2y,

g~ = 2x, ~:~ = 0,

~~~ = O.

 

 

 

 

 

 

IS CooPHHK 311JUl~ no Bb,cweA M8TCM8THKe. 2 KYPc

449

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]