Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Сборник задач по высшей математике 2 том

.pdf
Скачиваний:
68
Добавлен:
15.03.2015
Размер:
27.38 Mб
Скачать

r.D:e 06JIacTb D z -

'1aCTb9TOrO npHMoyrOJIbHHKa, JIe)KaIII,M HH)Ke npHMoti

x + y = Z, T. e. y =

-x + Z;

f(x, y) -

nJIOTHOCTb pacnpe.D:e.rreHHH .D:BYMepHoti

C. B. (X, Y); JI(X)

=

fx(x)

H h(y) =

Jy(y) -

nJIOTHOCTH paCnpe.D:eJIeHHH

BepOHTHocTeti CJIY'latiHblxBeJIH'!HHX H Y COOTBeTCTBeHHO. ITo YCJIOBHIO

JI(x) = {1'

x E [0;1],

H

h(y)={l,

YE[-1:2],

 

0,

x ft

[0; 1],

 

 

0,

y ft [-1,2].

TaK KaK C. B. X H

Y He3aBHCHMbI, TO

f(x, y) =

JI (x)h(Y) = 1 ·1 3

 

 

 

 

 

 

 

=lB

npHMoyrOJIbHHKe ABeD (BHe era f(x, y) = 0).

y

,, ,

B "

2

 

 

 

 

 

2

x

 

 

 

 

D

 

 

 

 

 

Puc.

95

 

 

 

 

 

CJIe.D:OBaTeJIbHO,

 

 

 

 

 

 

 

Fz(z) = III dxdy =

1IIdxdy =

lSDz

 

Dz

 

 

Dz

 

 

 

 

(3.D:eCb SDz - nJIow:a.n:b 06JIacTH Dz). OTCIO.D:a HMeeM:

 

1) eCJIH z ~ -1, TO F(z) = 0;

 

 

 

 

 

 

 

2) eCJIH -1 < z ~ 0, TO F(z)

1

 

]

1

1

+ l)(z + 1) =

(z+1)2

= ['3SDz

=

'3'

2(z

6 '

nOCKOJIbKY B 9TOM CJIy'lae06JIaCTb Dz -

npHMoyraJIbHblti TpeyrOJIbHHK C

KaTeTaMH z + 1 H Z + 1 (Ha pHC. 95 06JIacTb Dz 3aIlITpHXOBaHa).

420

IIJIoru;a,rr.b 06JIacTH D z MO)KHO, KOHel-IHO, HatiTH C nOMOru;bIO HHTerpa.na

(XOTH 9TOT cnoco6 60JIee rpOM03.D:KHti):

z+1

z-z

z+1

z+1

SDz = ! dx

!

dy =

! dx· y[~z =

! (z - x + 1) dx =

o

-1

 

0

0

2

) IZ+1

= z2 + z -

(z + 1)2

 

=

= ( zx - ~ + x

0

2

+ z + 1

2z2 + 4z + 2 -

z2 -

2z -

1 Z2 + 2z + 1

(z + 1)2

 

2

 

 

 

2

 

= -'---~2---'-

3) eCJIH 0 < z ~ 2, TO F(z)

1

(z + 1) + z

·1 =

2z + 1

= 3 .

 

2

- 6 - ' TaK KaK

06JIacTb D z B 9TOM CJIY'-Iaenpe,n:CTaBJIHeT co6oti npHMoyrOJIbHyIO TpaneIJ.HIO c OCHOBaHHHMH z + 1 HZ (npOBepbTe!); ee BbICOTa paBHa 1.

4) eCJIH 2 < z ~ 3, TO

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

1 (

1· 3 -

1

 

 

2))

)

=

F(z) = 3(SOABCD-St.CEF) =

3

2(1- (z - 2)) . (1 - (z -

 

 

 

 

 

 

 

 

= ~ (3 - ~(3 -

z)2) = 1- ~(3 -

z2).

 

liIJIH, HHaqe, HCnOJIb3YH HHTerpa.nbI:

 

 

 

 

 

 

 

F(z) = ~( 72dX

j dy+

 

j dx 7~Y) =

 

 

 

 

 

o

 

-1

z-2

-1

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

= ~(3XI:-2+ !(Z-X+l)dX) = ~ (3Z-6+ (ZX- ~2 +X)I:_2) =

 

z-2

 

 

 

 

 

 

 

 

 

 

 

 

 

1 (

3z -

6 + z - z

2

+

2z -

1

(z - 2)2

)

=

 

 

 

= 3

 

 

2 +

2

+ 1 - z + 2

 

 

 

= 1 (_Z2 + 5z _ 'I+ (z -

 

2)2) = 1(_2Z2 + lOz _ 7 + Z2 -

4z + 4) =

 

3

 

2

2

 

 

 

6

 

 

 

 

 

 

= 1(_Z2 + 6z -

 

3) = _1(z2 - 6z + 9 - 6) = 1 _l(z -

3)2;

 

 

 

 

 

 

 

6

 

 

6

 

 

 

 

 

 

1

 

 

 

1

 

1

 

 

 

 

5) eCJIH 3 < Z, TO F(z) = 3SDz =

3S0ABCD =

3.3 = 1. TaKHM 06Pa30M

 

 

 

0,

 

 

 

 

z ~ -1,

 

 

 

 

 

 

 

(z + 1)2

,

-1 < z ~ 0,

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

F(z) = -2z6+ -1 ,

 

0< z ~ 2,

 

 

 

 

 

 

 

1- (z -

3)2 ,

2 < z ~ 3,

 

 

 

 

 

 

 

1,

 

 

6

3 < z.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

421

OTCIO.Ll:a

0,

 

z ~ -1, z > 3,

z+1

-1 < z ~ 0,

Jz(z) = F'(z) = ~

3'

 

0< z ~ 2,

 

2 < z ~ 3.

1-

~

 

3'

 

Cnoco6 2. Hati.Ll:eM nJIOTHOCTb pacnpe,n,eJIeHlUI c. B. Z = X +Y, HCnOJIb3Y.H <P0PMYJIY CBepTKH:

00

Jz(z) = Jh(x)h(z ,- x) dx.

- 00

C1>YHKIJ;HH no.Ll: 3HaKOM HHTerpaJIa OTJIH'IHbIOT HYJI.H JIHilib B CJIY'Iae

{o~ x ~ 1,

T.e. {o ~ x ~ 1,

(13.1) .

-1 ~ z - x ~ 2,

z - 2 ~ x ~ z + 1.

 

PeIIIeHHe CHCTeMbI 3aBHCHT OT 3Ha'leHH.Hz.

2; z + 1]

ECJIH z < -1, CHCTeMa (13.1) HeCOBMeCTHa; OTpe3KH [0; 1] H [z -

He nepeceKaIOTC.H (CM. reOMeTpH'IeCKYIOHJIJIIOCTpaIJ;HIO Ha pHC. 96). CJIe,n,o-

BaTeJIbHO, B 9TOM CJIY'Iaeh(z -

x) = 0 H, 3Ha'lHT,J(z) = O.

 

fie""", 'J

x

1""'C"'1

x

z-2"""i'+1

 

;;;,

 

'" 'I

 

0""1

x

x

0""

Puc. 96

 

Puc. 97

 

ECJIH -1 < z ~ 0, CHCTeMa (13.1) 9KBHBaJIeHTHa HepaseHCTBY 0 ~ X ~

~ Z + 1 (pHC. 97). IIo9TOMY

 

 

 

 

z+1

z+1

 

 

1

 

J(z) = J3 dx = -3-· o

ECJIH 0 < Z ~ 2, CHCTeMa (13.1) 9KBHBaJIeHTHa HepaBeHCTBY 0 ~ X ~ 1

(pHC. 98). IIo9TOMY

I', , , , , , , 'I

 

z-'i"" ';+1

x

;;;;

x

0"'1

Puc. 98

 

422

6.13.21. CJIY'lail:HbleBeJIH'lHHbI X nOKa3aTeJIbHoMY 3aKOHY:

ECJIH 2 < z :::; 3, CHCTeMa (13.1) 9KBHBaJIeHTHa HepaBeHCTBY z - 2 :::; x :::; 1

(pac. 99). IIo9ToMY

 

 

 

 

 

J(Z) = !1

1 dx = 1(1 - z + 2) = 1 -

~.

 

z-2

 

 

 

 

 

.',, , , , , , 'J

x

 

1""('("1 •

z-2"'" ''';+1

 

 

 

;,;,

 

x

;;;;

x

0"" 1

 

0"

"1

Puc. 99

 

 

Puc. 100

 

ECJIH 3 < z, CHCTeMa (13.1) HeCOBMeCTHa, TaK KaK OTpe3KH [z -

2; z + 1]

a [0; 1] He nepeceKalOTca (pHC. 100); T.e. h(z - x) = °H J(z) = 0.

 

I1TaK, KaK H B nepBOM CJIY'lae,

 

 

 

 

 

0,

x:::; -1, x> 3,

 

 

 

 

z+l ,

-1 < z :::; 0,

 

Jz(z) =

 

~

< z:::; 2,

 

 

 

3'

°

 

 

 

 

1- ~

2 < z:::; 3.

 

 

 

 

3'

 

 

 

6.13.19. Hail:TH nJIOTHOCTb pacnpe.n;eJIeHHa BepoaTHocTeil: CYMMbI .n;BYX He-

3aBHCHMbIX CJIY'lail:Hblx BeJIH'lHH, paBHOMepHO pacnpe.n;eJIeHHbIX Ha OTpe3Ke.[0; 2].

6.13.20. Hail:TH 3aKOH pacnpe.n;eJIeHHa CYMMbI Z .n;BYX He3aBHCHMbIX CJIy-

'lail:HblxBeJIH'lHHX H Y, pacnpe.n;eJIeHHbIX no HOPMaJIbHOMY 3a-

KOHY: X '" N(O; 1), Y '" N(O; 1). HaiI:TH M(Z) H D(Z).

H Y He3aBHCHMbI H pacnpe.n;eJIeHbI no

I

_!x

X ~

°

h(y) = {0,2e-

O,2Y

,

y ~ 0,

fr(x) = { 4e

4 ,

,

 

 

0,

 

x < 0,

0,

 

 

y < 0.

Hail:TH KOMn03HIJ;HlO 9THX 3aKOHOB.

Q IIJIOTHOCTb pacnpe.n;eJIeHHa C. B. Z = X +Y Hail:.n;eM, HCnOJIb3ya <POPMYJIY

g(z) = !z fr(x) . h(z - x) dx. o

g(z) = !z0,25e-O,25X 0,2e-O,2(Z-X) dx = 0,05e-O,2z !ze-O,25x+O,20x dx =

o

0

:= 0,05e-O,2Z !Z e-O,05x dx = _e-O,2z e-O,05x I: = e-O,2z (1 _ e-O,05Z). •

o

423

6.13.22.

Hatl:TH 3aKOHbI

pacnpe,n;eJIeHHH c. B. Z = X + Y, r,Il;e X H Y -

 

He3aBHCHMble CJIY'iatl:HbleBeJIH'iHHbI,HMelOIIIHe paBHoMepHoe pac-

 

npe,Il;eJIeHHe Ha oTpe3Ke [0; 1)

 

 

 

( fX(X) = {I,

x E [0; 1),

fy(y) = {I,

y E [0; 1), ).

 

0,

x ~ [0; 1),

0,

y ~ [0; 1)

6.13.23.

113BecTHo, 'iTOC. B. X pacnpe,Il;eJIeHa no nOKa3aTeJIbHOMY 3aKOHY

 

fx(x) = {0,3e-O,3X, x ~ 0,

 

 

 

0,

x < 0,

 

a c. B. Y '"R[O; 2) H He 3aBHCHT OT X. Hatl:TH nJIOTHOCTb pacnpe- ,Il;eJIeHHH CJIY'iatl:Hotl:BeJIH'iHHbIZ = X + Y.

6.13.24.

CJIY'iatl:Hbltl: BeKTop (X, Y) pacnpe,Il;eJIeH no 3aKoHY,

3a,IJ;aHHoMY

 

Ta6JIHu;etl:

 

 

 

 

 

 

X\Y

-2

-1

0,24°

1

 

 

-1

0,02

0,16

0,03

 

 

°2

0,05

0,15

0,10

0,06

 

 

0,03 0,09 0,06 0,01

 

 

Hatl:TH:

 

 

 

 

 

 

a) 3aKOHbI pacnpe,Il;eJIeHHH c. B. X H Y;

 

 

6) 3aKOHbI pacnpe,Il;eJIeHHH c. B. Z = -5X + 2 H W = ly3 -11;

 

B) MaTeMaTH'ieCKHeOlKH,Il;aHHH H ,Il;HCnepCHH CJIY'iatl:HblxBeJIH'iHH

 

ZHW.

 

 

 

 

 

6.13.25.

,1l;HcKpeTHM c. B. X 3a,IJ;aHa CBOHM PH,Il;OM pacnpe,Il;eJIeHHH

6.13.26.

Hatl:TH ,Il;HCnepCHIO c. B. Y = JX + 2.

 

 

HenpepbIBHM c. B. X

pacnpe,Il;eJIeHa

paBHOMepHO B

HHTepBarre

 

(-i; i)· Hatl:TH:

 

 

 

 

 

 

a) nJIOTHOCTb pacnpe,n;eJIeHHH c. B. Y = sin x;

 

 

6) 'iHCJIOBbleXapaKTepHCTHKH M(Y) H D(Y).

 

6.13.27.

CJIY'iatl:HMBeJIH'iHHaX pacnpe,Il;eJIeHa no 3aKOHY KOIIIH

x E III

HaHTH <PYHKU;HIO pacnpe,n;eJIeHHH H nJIOTHOCTb BepOHTHOCTH CJIy- 'iatl:Hotl:BeJIH'iHHbI:

a)Y=I-X;

6)Y=X 3

424

6.13.28. CJIyqatiHM BeJIHqHHa X HMeeT rrJIOTHOCTh pacrrpe,n;eJIeHHH

f(x) = {~'

XE(-i;i),

0,

xi (-i; i) .

HatiTH rrJIOTHOCTh pacrrpe.n;eJIeHHH BepOHTHocTeti g(y) CJIyqatiHoti

BeJIHqHHhI:

6) Y = IXI;

a) Y = 6X + 3;

B) Y = e- x2 .

6.13.29.IIycTh f(x) - rrJIOTHOCTh pacrrpe,n;eJIeHHH H. c. B. X, x E (-00,00).

HatiTH rrJIOTHOCTh pacrrpe.n;eJIeHHH g(y) CJIyqatiHoti BeJIHqHHhI Y, eCJIH:

a) Y = -X;

6) Y = X + 10;

B) Y = X2;

r) Y = arctgX.

6.13.30. IIycTh F(x) - <PyHKIJ;HH pacrrpe,n;eJIeHHH H.C.B. X. BhIpa3HTh qe-

pe3 Hee <PYHKIJ;HIO pacrrpe.n;eJIeHHH F(y) CJIyqatiHoti BeJIHqHHhI Y,

eCJIH:

+ 3;

 

a) Y = 2X

6) Y = e- X ;

B) Y = X3.

6.13.31.CJIyqatiHaH BeJIHqHHa X HMeeT rrJIOTHOCTh pacrrpe,n;eJIeHHH

1 _",2

f(x) = - e 2 .

~

HatiTH rrJIOTHOCTh pacrrpe,n;eJIeHHH BepOHTHocTeti g(y) CJIyqatiHoti

BeJIHqHHhI Y, eCJIH:

 

a) Y = 1.;

6) Y = IX - 11;

X

 

B) Y = 5X + 1.

6.13.32.113BecTHo, qTO H. C. B. X '" R[O, 2]. HatiTH <PYHKIJ;HIO pacrrpe,n;eJIeHHH H rrJIOTHOCTh pacrrpe,n;eJIeHHH CJIyqatiHhIx BeJIHqHH

Y = -2X + 4,

Z = IX-1I-

 

HatiTH M(Y) H D(Y).

 

 

 

 

6.13.33. 3aKOHhI pacrrpe,n;eJIeHHH qHCJIa OqKOB,

BhI6HBaeMhIx K8JK,n;hIM H3

,n;ByX CTpeJIKOB (X H Y cooTBeTcTBeHHo), TaKOBhI:

8

9

10

8

9

10

OrrHcaTh 3aKOH pacnpe,n;eJIeHHH CyMMhI OqKOB, Bh16HBaeMhIx 9THMH CTpeJIKaMH.

6.13.34. I1crroJIh3YH YCJIOBHe 3a,n;aqH 6.13.15, HaftTH FT(t) H h(t), r,n;e

T= ~.

6.13.35. COBMecTHoe pacrrpe,n;eJIeHHe c. B. X H Y 3a,n;aHO rrJIOTHOCThIO pac-

rrpe,n;eJIeHHHBepoHTHocTeti

f(X'Y)={~' eCJIHO~x~I,O~y~7r,

0, B rrpOTHBHOM CJIyqae.

HatiTH rrJIOTHOCTh pacrrpe,n;eJIeHHH BepoHTHocTeti c. B. Z = X + Y.

425

(0,1).
= 0,1;
= X + Y.
x
Z = ~.

6.13.36. CJIyqail:Hble BeJIHqHHbI X H Y He3aBHCHMbI H O,Il;HHaKOBO pacrrpe,Il;e- JIeHbI rro 3aKOHY N(O, 1). Hail:TH pacrrpe,Il;eJIeHHe c. B. Z = X 2 +y2.

6.13.37. MCrrOJIb3YH YCJIOBHe 3a,IJ;aqH 6.13.18, Hail:TH <PYHKII.HIO H rrJIOTHOCTh pacrrpe,n;eJIeHHH BepoHTHocTeil: c. B.

y

Puc. 101

6.13.38. CJIyqail:HaH TOqKa

(X, Y) pacrrpe,Il;eJIeHa paBHOMepHO B KBa,IJ;pa-

Te co CTOPOHOil: 1 (pHC.

101). Hail:TH 3aKOH

pacrrpe,Il;eJIeHHH c. B.

S=XY.

 

°::::; x ::::; 1, °::::; y ::::;

 

(fXY(X, Y) =

{ ~:

1; )

B rrpoTHBHOM CJIyqae.

6.13.39. Hail:TH <PYHKII.HIO pacrrpe,Il;eJIeHHH H rrJIOTHOCTb pacrrpe,Il;eJIeHHH BePOHTHocTeil: c. B. Z = max{X, Y}, r,Il;e X H Y - HerrpepbIBHble, He3aBHCHMble, paBHOMepHO pacrrpe,Il;eJIeHHble Ha OTpe3Ke [0,1] CJIyqail:Hble BeJIHqHHbI.

6.13.40. 3a,IJ;aHbI rrJIOTHOCTH pacrrpe,n;eJIeHHH BepoHTHocTeil: ,Il;ByX He3aBHCH-

MbIX C.B. X H Y:

fx(x) = {0,25X,

x

E [1,3],

H Jy(y) = {01" Y E [1,2],

0,

x

f. [1,3]

Y f. [1,2].

Hail:TH rrJIOTHOCTb pacrrpe,Il;eJIeHHH CYMMbI Z

6.13.41. BpeMH T1 , B TeqeHHe KOTOPOro KJIHeHT OlKH,Il;aeT 06cJIY:lKHBaHHH, H caMO BpeMH 06CJIJ:lI(HBaHHH T2 - ,Il;Be He3aBHCHMble HerrpepbIBHble CJIyqail:Hble BeJIHqHHbI, HMeIOW;He rrOKa3aTeJIbHOe pacrrpe,Il;eJIeHHe C rrapaMeTpaMH >'1 H >'2 ~ >'1 COOTBeTCTBeHHO. Hail:TH rrJIOTHOCTb pacrrpe,n;eJIeHHH BepOHTHocTeil: o6w;ero BpeMeHH T = T1 + T2 , npoBe,Il;eHHOrO KJIHeHTOM B CHCTeMe MaccoBoro 06CJIY:lKHBaHHH.

6.13.42. He3aBHcHMble CJIyqail:Hble BeJIHqHHbI X H Y pacrrpe,n;eJIeHbI rro O,Il;- HOMY H TOMY :lKe:

a) rroKa3aTeJIbHoMY 3aKOHY C rrapaMeTpoM >.

6) paBHOMepHOMY 3aKOHY B HHTepBarre Hail:TH M(Z), r,Il;e Z = X + Y.

426

KOHTponbHble BOnpOCbl lit 60nee CnmKHble 3aACIHlltR

6.13.43. IhBecTHo, 'ITOC. B. X '" N(a, a). IloKa3aTb, 'ITOc. B. Y, CBH3aHHaH CO c. B. X JUfHeitHoit <PYHKII.HOHa.J1bHOit 3aBHCHMOCTbIO Y = kX + b

(k, b E 1R), TaIOKe paCIIpe,n,e.JIeHa no HOPMa.J1bHOMY 3aKOHY. l..{eMY

paBHbI M(Y) H a(Y)?

6.13.44. IhBecTHo, 'ITOC.B. X", R[-1,2]. HaitTH IIJIOTHOCTb pacIIpe,n;eJIeHHH c. B. Y = IXI. (HaitTH fx(x) B HHTepBa.J1e (-1; 1), a 3aTeM B

HHTepBa.J1e (1; 2).)

6.13.45. IlycTb F(x) - <PYHKII.HH pacIIpe,n;eJIeHHH HeilpepbIBHoit cJIY'laitHOit Be.JIH'lHHbI X. HaiiTH <PYHKII.HH pacIIpe,n;eJIeHHH CJIY'laiiHbIX

BeJIH'lHHY = 16X2 - 9,

Z = e-3X , BbIpa3HB HX 'lepe3<PYHKII.HIO

paCIIpe,n,eJIeHHH c. B. X.

 

 

6.13.46. CJIY'laiiHaHBe.JIH'lHHaX

HMeeT nOKa3aTeJIbHOe pacnpe,n;eJIeHHe C

nJIOTHOCTbIO

 

 

f(x) = {e-X ,

x ~ 0,

 

0,

x < o.

By,n;eT JIH HMeTb IIOKa3aTeJIbHOe pacIIpe,n;eJIeHHe c. B. Y = X + I?

HaitTH <PYHKIJ.HIO IIJIOTHOCTH paCIIpe,n,eJIeHHH CJIY'laiiHbIXBeJIH'lHH

Y = 2ex + 6, Z = X2.

6.13.47.By.n;yT JIH He3aBHCHMbI c. B. X H Y, eCJIH HX COBMeCTHoe pacIIpe- ,n;e.JIeHHe f (x, Y) HBJIHeTCH paBHOMepHbIM:

 

a) B 06JIacTH D = {(x, y):

0::::;

x ::::;

1,

0 ::::; y ::::; 1 -

x};

 

 

6) B 06JIaCTH F = {(x,y):

0::::;

x::::;

1,

0::::; y::::; 2}?

 

 

6.13.48.

lICilOJIb3YH YCJIOBHe 3a,n;a'lH 6.13.35, HaiiTH Fz(z)

H

fz(z), r,n;e

 

Y

 

 

 

.

 

 

 

Z= X.

 

 

 

 

 

6.13.49.

1I3BecTHO, 'ITOX H Y - He3aBHCHMbIe CJIY'laiiHbIeBeJIH'lHHbI,HMe-

 

IOW;H~ HOpMa.J1bHOe pacnpe,n;eJIeHHe: X

'" N(O; 1),

Y

'" N(O; 1).

 

HaitTH pacIIpe,n,eJIeHHe c. B. Z = JX2 + y2.

 

 

6.13.50. HaitTH IIJIOTHOCTb paCIIpe,n;eJIeHHH CYMMbI ,n;BYX paBHOMepHO pacnpe,n;e.JIeHHbIX Ha OTpe3Ke [-1; 1] He3aBHCHMbIX CJIY'laiiHbIXBe.JIH- 'lHHX H Y. l..{eMY paBHa Fx+y(z)?

6.13.51. CTy,n;eHT IIpH IIoe3,n;Ke B HHCTHTYT nOJIb3yeTcH MeTpo H TpoJIJIeii6YCOM. Iloe3,n; MeTpo npHxo,n;HTCH O:ll{H,n;aTb He 60JIee 3 MHHYT, a O:>KH,n;aHHe TpoJIJIeit6yca He 60JIee 8 MHHYT. C'lHTaeTCHBpeMH O:>KH- ,n;aHHH noe3,n;a B MeTpo H TpoJIJIeii6yca HeilpepbIBHbIMH c. B. X H

Y, paCIIpe,n,eJIeHHbIMH paBHOMepHO COOTBeTCTBeHHO B npOMe:>KYTKax [0; 3] H [0; 8], HaitTH nJIOTHOCTb pacnpe,n;eJIeHHH BepoHTHocTeit o6w;ero BpeMeHH O:>KH,n;aHHH Z = X + Y.

427

§ 14. nPEAEl1bHblE TEOPEMbl TEOPlt1lt1

BEPOflTHOCTEt1

Bo MHorHX 3a,n;a'laxTeopHH BepOHTHocTeft H3Y'IaIOTCHCJIY'IaftHbIeBeJIH'IHHbI,

HBJIHIOIIJ;HeCH CYMMaMH 60JIbillOro '1HCJIa,lI;PyrHx CJIY'IaftHbIxBeJIH'IHH,T. e. 3aBHCHIIJ;He OT 60JIbillOrO '1HCJIaCJIY'IaftHbIX<l>aKTopOB. Orrpe,ll;eJIeHHbIe CBoftcTBa TaKHX CJIY'IaftHbIxBeJIH'IHHorrHCbIBaIOTCH cOBoKyrrHocTbIO TaK Ha3bIBaeMbIX npeiJeJl'b'lt'bl.X meopeM, KOTopbIe, B CBOIO O'lepe,ll;b,pa36HBaIOTCH Ha ,lI;Be rpyrrrrbI TeopeM - «3aKOH

60JIbIIIHX '1HCeJI»H «rreHTpaJIbHaH rrpe,ll;eJIbHaH TeopeMa».

rpyrrrra TeopeM, Ha3bIBaeMbIX «3aKOHOM 60JIbIIIHX '1HCeJI», YCTaHaBJIHBaeT ycTOft'lHBOCTb CPe,ll;HHX 3Ha'leHHft:rrpH 60JIbiliOM '1HCJIeHcrrbITaHHft HX Cpe,ll;HHft pe3YJIbTaT MOlKeT 6bITb rrpe,ll;CKa3aH C ,lI;OCTaTO'lHoftTO'lHOCTbIO.,I4>yraH rpyrrrra TeopeM, Ha3bIBaeMaH «rreHTpaJIbHoft rrpe,ll;eJIbHoft TeopeMoft», YCTaHaBJIHBaeT, 'ITOrrpH ,lI;OCTaTO'lHO06IIJ;HX H eCTeCTBeHHbIX YCJIOBHHX 3aKOH pacrrpe,ll;eJIeHHH CYMMbI 60JIbIIIoro '1HCJIaCJIY'laftHbIxBeJIH'IHH6JIH30K K HOPMaJIbHOMY.

HepaBeHCTBO Ye6blWeBa ~ 3aKOH 60nbW~X ... ~cen

TeopeMa 6.9 (HepaBeHcTBo MapKoBa). Ecn~ c. B. X np~H~MaeT HeOTp~Lla­

TenbHble aHa'leH~ft ~ ~MeeT MaTeMaT~'leCKOe O)K~AaH~e M(X), TO Anft mo6oro c > 0 ~MeeT MeCTO HepaBeHCTBO:

M(X)

P{X ~ c} ~ - c - '

2ho HepaBeHCTBO, O'leBH,lI;HO,paBHOCHJIbHO CJIe,ll;yIOIIJ;eMY

M(X)

P{X < c} ~ 1 - - c - '

TeopeMa 6.10 (HepaBeHcTBo "Ie6blweBa). Ecn~ c. B. X ~MeeT MaTeMan'leCKOe

O)K~AaH~e M(X) ~ A~cnepc~1O D(X), TO Anft nlO6oro c > 0 ~MeeT MeCTO HepaBeHCTBO

P{IX - M(X)I ~ c} ~ DC;). c

HepaBeHCTBO qe6bIIIIeBa MOlKHO 3aMeHHTb PaBHOCHJIbHbIM

 

P{IX - M(X)I < c} ~ 1 _ D(.;).

(14.1)

c

HepaBeHCTBa MapKoBa H qe6bIIIIeBa MOlKHO HCrrOJIb30BaTb ,!J,J1H OrreHKH BepoHTHocTeft C06bITHft, CBH3aHHbIX co CJIY'IaftHoftBeJIH'IHHOft,pacrrpe,ll;eJIeHHe KOTOPOit HeH3BeCTHO.

428

ECJIH C. B. X = m HMeeT 6UHOMUaJlMWe paCnpeOeJleHUe C MaTeMaTH'IecKHM O»m,LlaHHeM M(X} = a = np H ,LlHCrrepcHeil: D(X} = npq, HepaBeHCTBO qe6hllleBa

P{lm - npl < c} ~ 1 _ n~q.

c

~H omHOCUmeJlbHOil "tacmom'bl. r;: C06hlTHH A B n He3aBHCHMhlX HCrrhlTaHH-

jlX, B K8JK,!lOM H3 KOTOPhlX OHO MOlKeT rrpoH30il:TH C BepOHTHOCTbIO p, HepaBeHCTBO qe6hllleBa rrpHHHMaeT BH,!l

P {I r;: - pi < c} ~ 1 - pq2·

(14.2)

nc

OCHOBHOil: <P0PMOil: «3aKOHa 60JIbllHX '1HCeJI» C'IHTaeTCH

TeopeMa 6.11 ('"Ie6blwea). ECI1II1 clly'la~Hble BeI1 111'1111 Hbl Xl, X2, ... , X n , ... He3aBIIICIIIMbi III CYUlecTByeT TaKOe 'IIIICIlOC> 0, 'ITOD(Xi) ~ c (i = 1,2,3, ... ), TO Alll'l11I060ro c > 0 BblnOIlHl'IeTCl'IHepaBeHCTBO

(14.3)

1:13 HepaBeHCTBa (14.3) CJIe.n;yeT rrpe,!leJIbHOe paBeHCTBO

TeopeMa qe6hllleBa rrOKa3b1BaeT, 'ITOCpeOHee apU(/jMemU"teCICOe 60JlbUJ,OZO "tU- c.!!a cJly"tailH'bI.X 6eJlU"tUH ICaIC YZOOHO MaJlO omJlu"taemCJJ (C BepOHTHOCTbIO 6JIH3KOil:

K 1) om cpeoHezo apu(/jMemu"tecICozo ux MameMamu"tecICUX O'JICuoaHuil.

CnElACTBlile 6.1. ECIlIII c. B. Xl, X 2 , ••• , X n , ... He3aBIIICIIIMbi III OAIIIHaKOBO pacnpeAelleHbl, C MaTeMaTIII'IeCKIIIM0)f(IIIAaHllleMaIllAlIIcnepCllle~q2.TOAlll.lIll060ro

13:>0

CnElACTBlile 6.2 (TeopeMa 6epHynnlll). ECIlIII B yCIlOBlIIl'IX cxeMbl 6epHYllllIII Be-

POl'lTHOCTbHacTynlleHlIIl'IC06blTIIIl'IA B OAHOM onblTe paBHa p, 'IIIICIlOHacTynlleHIII~

3Toro C06blTIIIl'I nplll n He3aBIIICIIIMbiX IIIcnblTaHlIIl'IXpaBHO m, TO Alll'll1Io60ro c > 0

lim P {I r;: - pi < c} = 1.

n-+oo

429

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]