Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Сборник задач по высшей математике 2 том

.pdf
Скачиваний:
68
Добавлен:
15.03.2015
Размер:
27.38 Mб
Скачать

6.12.66. cI>YHKIJ;HjI pacnpe,n:eJIeH~jI CHCTeMbI (X, Y) HenpepbIBHbIX c. B. 3a-

,n:aHa B BH,n:e

 

 

x < °HJIH Y < 0,

a,

 

 

F(x, y) = { 0,5(sin x + sin y - sin(x + y»,

°::;; x ::;; ~,

0::;; y ::;; ~,

1,

 

 

7r

7r

 

 

x> 2 H Y

=

HaihH:

 

 

 

 

a) P{(X, Y) ED}, r,n:e

 

 

 

 

 

6"

::;;x::;; 3'

 

 

7r

::;;y::;;

7r)

 

D= (x,y):

[{3

2'

 

{~

::;; x::;;

~

 

1

3

2'

 

0::;; y::;;~.

6)fxy(x,y).

6.12.67.,IJ,BYMepHblit CJIY'faitHblitBeKTop (X, Y) paBHoMepHo pacnpe,n:eJIeH

(f(x, y) = c) B 06JIaCTH D = {(x, y): Ixl + Iyl ::;; I} (BHe 06JIacTH f(x,y) = 0). HaitTH:

 

a) fxy(x, y);

6) fx(x) H fy(y).

 

3aBHcHMbI JIH CJIY'faitHbleBeJIH'fHHbIX H Y?

6.12.68.

3a,n:aaa <PYHKIJ;HjI f(x, y)

= K . e-(ax2+bx+cy2). KaKHM YCJIOBHjlM

 

,n:OJDKHbI y,n:oBJIeTBOpjlTb 'fHCJIaa, b H C ,n:JIjI TOro, 'fTo6bI9Ta <PYHK-

 

IJ;HjI MOrJIa 6bI 6bITb nJIOTHOCTblO pacnpe,n:eJIeHHjI BepOjlTHOcTeit?

6.12.69.

nYCTb CJIY'faitHbleBeJIH'fHHbI X H Y He3aBHCHMbI H HOPMaJIbHO

pacnpe,n:eJIeHbI: X '" N(O; 1) H Y '" N(O; 1). HaitTH: a) COBMeCTHYIO nJIOTHOCTb pacnpe,n:eJIeHHjI fxy(x,y);

6)P{(X,Y) ED}, r,n:e D = {(x,y): 2::;; Jx2 +y2 < 3}.

6.12.70.HenpepbIBHajl c. B. X""R[-2; 4], a HenpepbIBHM c. B. Y ""N( -1; 2). 1I3BecTHo, 'ITOrxy=-0,5. HaitTH M(XY).

6.12.71.3a,n:aHa HenpepbIBHM c. B. X C nJIOTHOCTblO pacnpe,n:eJIeHHjI Bepo-

jlTHOcTeit fx(x) = A . e- X 2 1I3BecTHo, 'ITO,n:pyrM C. B. Y CBjI3aHa CO C. B. X paBeHCTBOM Y = X2. qeMY paBeH K09<P<PHIJ;HeHT KOppeJIjlIJ;HH C. B. X H Y? KaKoit BbIBO,n: CJIe.n:yeT H3 nOJIY'feHHOrO pe3YJIbTaTa?

§ 13. (J)YHKU.LiILiI Cl1Y....A~HbIX BEl1Li1 .... LilH

(J)YHK4111111 OAHOM CI1Y'-laMHOMBellIII'-III Hbl

IIYCTb paCCMaTpHBaIOTCS: ,ll;Be CJIY'IafiHbleBeJIH'IHHblX H Y, CBS:3aHHble <PYHK-

IJ;HOHaJIbHOfi 3aBHCHMOCTbIO

Y = rp(X).

410

ECJIH X - .n:HCKpeTHaJI C. B., 3aKOH pacnpe.n:eJIeHHH KOTOPOi!: Onpe.n:eJIHeTCH <POp- r.lYJIoi!: Pi = P{X = Xi}, i = 1,2,3, ... , TO C. B. Y TaKlKe .n:HCKpeTHa, a ee 3aKOH pacnpe.n:eJIeHHH BbIpalKaeTCH <P0PMYJIOi!: Pi = P{Y = Y;}, i = 1,2,3, ... , r.n:e Yi = ip(x;),

p{Y = y;} = P{X = Xi}.

MaTeMaTH'IeCKOeOlKH.n:aHHe H .n:HcnepCHH C. B. Y onpe.n:eJIHIOTCH COOTBeTCTBeH-

HO paaeHCTBaMH

M(Y) = M(ip(X)) = LYiPi = L ip(Xi)Pi

i i

D(Y) = D(ip(X)) = L(Yi - ay)2pi = L(ip(X;) - ay)2pi'

i

me ay = M(Y).

ECJ1H X

- HenpepblBHaJI C. B. C nJIOTHOCTbIO pacnpe.n:eJIeHHH f (X) H eCJIH

y = ip(X) -

.n:H<p<pepeHD:HPyeMaJI H MOHOTOHHaJI <PYHKD:HH, TO llJIOTHOCTb pacnpe-

p;eJIeHHH g(y) C. B. Y = ip(X) BblpalKaeTCH <P0PMYJIOi!:

 

g(y) = f(1f;(y)) ·11f;'(y)l,

rp;e 1f;(y) = ip-1(y) = X - <PYHKD:HH, 06paTHaH <PYHKD:HH Y = ip(X) (::na <PYHKD:HH cY11l,eCTByeT B CHJIY MOHOTOHHOCTH ip(X)).

ECJ1H <PYHKD:HH Y = ip(X) HeMOHOTOHHaJI, TO 'IHCJ10BaHnpHMaJI pa36HBaeTCH

Ha n npOMelKYTKOB MOHOTOHHOCTH H 06paTHaJI <PYHKD:HH 1f;i(Y) HaxO.n:HTCH Ha KalK.n:OM H3 HHXj llJIOTHOCTb pacnpe.n:eJIeHHH g(y) C. B. Y = ip(X) onpe.n:eJIHeTCH B aTOM

CJ1Y'Iaeno <popMYJIe

n

g(y) = L f(1f;i(Y)) ·11f;;(y)l· i=1

,I1;.rrH HaxolK.n:eHHH MaTeMaTH'IeCKOrOOlKH.n:aHHH H .n:HcnepCHH C. B. Y = ip(X)

Heo6H3aTeJIbHO HaxO.n:HTb 3aKOH ee pacnpe.n:eJIeHHHj MOlKHO BOCnOJIb30BaTbCH <popMYJIaMH

M(Y) = M(ip(x)) = J00ip(X)· f(x)dx,

, =

=

- 00

J

 

 

00

D(Y) D(ip(x))

 

(ip(X) - ay)2 f(x) dx.

 

 

- 00

::? IIycTb paccMaTpHBaeTCH CHCTeMa .n:BYX CJ1Y'Iai!:HblxBeJIH'IHH(X, Y). ECJ1H KalK.n:oi!: nape (X, y) B03MOlKHblX 3Ha'leHHi!:C. B. X H Y COOTBeTcTByeT O.n:HO B03MOlKHoe 3Ha'leHHez = ip(X, y) (Haxo.n:HMoe no onpe.n:eJIeHHOMY 3aKOHY) C. B. Z, TO Z Ha3b1BalOT ljjyH,7C'Il,Ueit iJayx c.n,y"l,aitH,'btx apeYMeH,mOa X H Y:

Z = ip(X, Y).

411

)JjrH <PYHKD;HH .n:BYX (H 6oJIee) aprYMeHTOB y.n:06Hee CHaqaJIa HaxO.n:HTb ee

<PYHKD;HIO pacnpe.n:eJIeHHH G(z), a 3aTeM -

nJIOTHOCTb pacnpe.n:eJIeHHH g(z):

 

g(z) = G'(z).

ECJIH (X, Y) - CHCTeMa .n:HCKpeTHbIX C. B., TO

 

G(z) = P{Z < z} =

Pij;

 

 

i,j:<P(Xi ,Yj )<z

eCJIH (X, Y) -

CHCTeMa HenpepbIBHblX C. B., TO

 

G(z)=P{Z<z}= !!!(x,y)dXdy,

 

 

D.

r.n:e !(x, y) -

nJIOTHOCTb pacnpe.n:eJIeHHH CHCTeMbI (X, Y);

 

Dz = ((x,y): cp(x,y) < z}.

BalKHOe ,l.l;JIH npaKTHKH 3HaqeHHe HMeeT 3a.n:aqa onpe.n:eJIeHHH 3aKOHa pacnpe-

.n:eJIeHHH CYMMbI .D:BYX CJIyqaitHblX BeJIHqHH: Z = X + Y.

ctlYHKD;HH pacnpe.n:eJIeHHH C. B. Z MOlKeT 6b1Tb Hait.n:eHa no <popMYJIe

Gz(z) = 1(J~(X'y) dY) dx,

- 00 - 00

r.n:e !(x, y) - nJIOTHOCTb pacnpe.n:eJIeHHH CHCTeMbI (X, Y). IlJIOTHOCTb pacnpe.n:e- JIeHHH CYMMbI .n:BYX CJIyqaitHblx BeJIHqHH BbIpalKaeTCH <P0PMYJIOit

g(z)= !00!(x,z-x)dx

(HJIH: g(z)= !00

!(z-y,y)dy).

- 00

- 00

 

Oco6eHHO BalKeH CJIyqait, Kor.n:a CJIyqaitHble BeJIHqHHbl X H Y He3aBHCHMbI.

Tor.n:a !(x,y) = /1 (x)h(Y) H

 

 

00

00

 

g(z)= !/1(x)h(z-x)dx

(HJIH: g(z) = ! /1(z - Y)h(Y) dy),

- 00

- 00

 

r.n:e /1 (x) H h (y) - nJIOTHOCTH pacnpe.n:eJIeHHH C. B. X H Y COOTBeTCTBeHHO. ECJIH B03MOlKHble 3HaqeHHH aprYMeHTOB HeOTpHD;aTeJIbHbI, TO g(x) Haxo.n:HM no <popMYJIe

z

g(z) = !/1(x)h(z-X)dX. o

IIoCJIe.n:HIOIO <P0PMYJIY Ha3b1BaIOT ifjoP.My/IOit CBepmICU HJIH ifjoP.MyJ!oit II:O.Mno3U'4UU iJBYX pacnpeiJeJ!e'ltuit, a CPYHKD;HIO g(z) - CBepmll:oit ifjy'ltll:'4uit /1(x) H h(Y);

3aKOH pacnpe.n:eJIeHHH CYMMbI Z = X +Y .n:BYX He3aBHCHMblX C. B. Ha3b1BaIOT II:O.M- n03U'4Ueit (CBepTKoit) 3aKOHOB pacnpe.n:eJIeHHH CJIaraeMblX.

412

6.13.1.,il;HcKpeTHruI c. B. X 3a,rr,aHa CBOHM P.H)WM pacIIpe,n;eJIeHH.H

HaitTH:

a) pacIIpe,n;eJIeHHe c. B. Y = -3X2 + 1;

6) 3aKOH pacIIpe,n;eJIeHH.H c. B. T = cos (~X) - 1, a TaIOKe M(T)

H D(T).

CJIe.n;yIOID;He 3Ha'IeHH.H: Yl =

o a) CJIY'Iail:HruI BeJIH'IHHa Y "pHHHMaeT

= -3(-2)2+1 = -11, Y2 = -3(-1)2+ 1 = -2, Y3 = I, Y4 = -2·1+1 = -2,

Y5 = -3·4 + 1 = -11, Y6 = -3.32 + 1 = -26, Y7 =

-3.42 + 1 =

-47.

BepO.HTHOCTH, 9THX 3Ha'IeHHil: TaKHe )Ke, KaK

H y c. B.

X, T. e. PI =

0,05,

P2 = 0,10 H T.,n;. 3aKOH paCIIpe,n;eJIeHH.H c. B. Y MO)KHO 3aIIHCaTb B BH,n;e

llJIll (y'IHTblBruI,'ITOP{Y=-11}=Pl +P5=O,05+0,15=O,20, P{Y=-2}=

=0,10+0,25=0,35) B 60JIee KOMilaKTHOM BH,n;e '

6) AHaJIOrH'IHOIIOJIY'IaeM3aKOH pacIIpe,n;eJIeHH.H c. B. T = cos 1'(;- - 1:

("POBePKa: t Pi = 1).

,=1

M(T) = -2·0,20 + (-1) ·0,55 + 0·0,25 = -0,95;

D(T) = [M(T2)_(M(T))2) = (-2)2.0,20+(-1)2.0,55+02.0,25-(-0,95)2 = = 1,35 - 0,9025 = 0,4475. •

6.13.2.,il;HcKpeTHruI c. B. X 3a,rr,aHa 3aKOHOM pacIIpe,n;eJIeHH.H

Xi

0

1'(

1'(

1'(

1'(

 

6

'4

3

2'

1'(

 

 

 

Pi

0,15

0,15

0,25

0,30

0,10

0,05

HaitTH:

a) 3aKOH pacIIpe,n;eJIeHH.H c. B. Y = 4 sin2 X;

6)M(Y), D(Y), a(Y).

6.13.3.,il;HcKpeTHruI c. B. X 3a,rr,aHa Ta6JIHlJ;eil: pacIIpe,n;eJIeHH.H

413

= X2.

HaitTH:

a) 3aKOHbI pacnpe)l,eJIeHH.H C. B. Y = ~IXI, Z = x - M(X);

6)M(Y), D(Y), a(Y), M(Z), D(Z).

6.13.4.IIJIOTHOCTb pacnpe)l,eJIeHH.H BepO.HTHOcTeit HenpepbIBHoit c. B. X

HMeeT BH)l,

1

x2

< x < 00.

f(x) = . m=e- s

, -00

y

21T

 

 

HaitTH nJIOTHOCTb pacnpe)l,eJIeHH.H c. B. Y

<) OTMeTHM, qTO 3a,n,aHHa.H H. c. B. X pacnpe)l,eJIeHa no HOPMaJIbHOMY 3aKOHY: X '" N(O; 2). PeIIIHM 3a,n,aqy )l,BYM.H cnoc06aMH:

1) npe)l,BapHTeJIbHO Hait)l,.H <PYHKIIHIO pacnpe)l,eJIeHH.H G(y) C.B. Y, a 3a-

TeM, BOCnOJIb30BaBIIIHCb paBeHcTBoM g(y) = G'(y), H HCKOMYIO nJIOTHOCTb pacnpe)l,eJIeHH.H g(y) c. B. Y;

2) HCnOJIb3Y.H <P0PMYJIY g(y) = f("p(y)) ·1"p'(y)l·

 

 

Cnoco6 1. B03MO>KHble 3HaqeHH.H CJIyqaitHblx BeJIHqHH X

H Y CB.H3aHbI

3aBHCHMOCTbIO y = x 2

TaK KaK c. B. Y He npHHHMaeT OTpHIIaTeJIbHblX 3Ha-

qeHHit, TO G(y) = P{Y < y} = 0)l,JI.H Y :::;; O. IIycTb Y >

O. Tor)l,a

G(y) = P{Y < y} = p{X2 < y} = P{IXI < y'y}=

 

 

 

 

y'Y

2

 

y'Y 2

= P{-y'y < X < y'y}= J

_1_e- s dx = ~. Je- Xs dx,

 

 

 

 

X

 

 

 

 

-y'Y2~

 

2~ 0

T.e.

 

y'Y

2

 

 

 

 

 

 

 

 

G(y) = { !e- Xs dx,

npH y >

0,

 

 

0,

 

 

npH y:::;; O.

 

 

1

_ (y'Y)2

,

1

_1l.

1

g(y) = G'(y) = {

~e

s

. (.jY)

, = { ~e 2.jY'

 

0,

 

 

0,

 

 

T.e.

 

.~e-~, npHY>O,

 

 

 

 

 

 

g(y) = { 2y 21TY

npH y:::;; O.

 

 

 

0,

 

 

3a.Me"ta'Hue. Bblp8JKeHHe )l,JI.H <PYHKIIHH

pacnpe)l,eJIeHH.H

c. B. Y MO:>KHO

3anHcaTb HHaqe:

 

 

 

 

 

 

G(y) = P{Y < y} = ... = P{-y'y < X < y'y}=

= P{X < y'y}- P{X:::;; -y'y}= P{X < y'y}- P{X < -y'y}=

= Fx(y'y) - Fx(-y'y).

414

f('l/J(y)) . I'l/J'(y) I, lIOJIY'IaeM:

)J,l1cPcPepeHIJ;HPYH lIOJIY'IeHHOepaBeHCTBO lIO y, lIOJIY'IaeM

 

g(y) = G~(y) =

 

 

 

 

 

 

=Fx(..;y) . 2~ + Fx( -..;y) . 2~ =

2~(fX(..;y) + fx( -..;y)) =

1

(1

_(v'Y)2

1

_(-v'Y)2)

1_1l.

= 2JY·

2J27f e

8 + 2J27f e

8

= 2J2Y7f e 8,

T. e. TaKoit )Ke pe3YJIbTaT

 

 

 

 

 

 

g(y) = {_2..lftifY_e-~,

y > 0,

 

 

 

 

0,

 

y ~ o.

 

 

Cnoco62. B HHTepBaJIe (-00; 00) cPYHKII,HH y =

x2 He MOHOTOHHa. Pa30-

6beM 9TOT HHTepBaJI Ha ,lJ;Ba HHTepBaJIa (-00; 0) H (0; 00), B KOTOPbIX cPYHKIJ;I1H Y = x 2 MOHOTOHHa. Ha HHTepBaJIe (-00; 0) 06paTHaH cPYHKII,HH K cPYHK-

IJ;I1H Y =

x 2

eCTb

Xl = '1/h(Y)

= -JY, Ha HHTepBaJIe

(0;00) HMeeM X2 =

= 'l/J2(y)

=

JY. MCKOMYIO lIJIOTHOCTb

paclIpe,lJ;eJIeHHH

Hait,lJ;eM, HClIOJIb3YH

paBeHCTBO

 

 

 

 

 

 

 

 

 

 

 

g(y)

= fX('l/JI(Y))

. l'l/JUy) 1 + fx('l/J~(y)) ·1'l/J~(y)l·

TaK KaK

 

 

 

 

 

 

 

 

 

 

1'l/J~(y)1 =

1(-..;yY 1 = 1-2~1 =

2~'

H 1'l/J~(y)1 =

1(..;yY 1 =

12~1 = 2~'

TO

 

 

 

 

 

 

 

 

 

 

 

 

1

_(v'Y)2

1

1

_(-v'Y)2

1

 

1_1l.

g(y)=--e

8 · -- + -- e

8

· -- = -- e 8.

 

2J27f

 

2JY

2J27f

 

2JY

2J27fY

TaK KaK y =

x2 , X

E lR =

(-00; 00), TO y > 0, lI09TOMY g(y) = 0 lIpH Y ~ o.

lfTaK,

 

 

 

 

~e-~,

y > 0,

 

 

 

 

 

 

 

 

 

 

g(y) = { 2y 27fY

 

y ~ o.

 

 

 

 

 

 

0,

 

 

6.13.5.

HelIpepbIBHaH CJIY'IaitHaHBeJIH'IHHaX HMeeT paBHoMepHoe pac-

 

 

 

 

 

 

 

 

 

1

lIpH X E [1; 3],)

 

lIpe,lJ;eJIeHHe Ha OTpe3Ke [ 1; 3)

( T. e. f(x)

= {

-2 ,

 

 

.

 

 

 

 

 

 

 

 

0,

lIpH X ~ [1; 3)

 

HaitTH lIJIOTHOCTb paClIpe,lJ;eJIeHHH cPYHKII,HH:

 

 

 

a)Y=2X;

 

 

6)Y=X2.

 

 

Q a) <l>YHKII,HH y = 2x Ha OTpe3Ke B03MO)KHbIX 3Ha'leHHitc. B. X MOHOTOHHa. n09TOMY 06paTHaH eit cPYHKII,HH X = 'l/J(y) = ~y CYIIJ;eCTByeT H TaK)Ke MOHO-

TOHHa Ha OTpe3Ke [2; 6) (TaK KaK 1 ~ x ~ 3, TO 2 ~ y = 2x ~ 6). MClIOJIb3YH CPOPMYJIY g(y) =

g(y) ~{t1Gy)'1

lIpH 2

~ Y ~ 6,

 

lIpH Y f/. [2; 6).

415

Kax BU,n;UM, H. C. B. Y UMeeT TaJOKe pasHoMepHOe paclIpe,n;eJIeHUe, T. e.

Y.....,R[2;6].

6) Cl>YHKIJ;UH y = x 2 TO:>Ke MOHOTOHHa Ha OTpe3Ke [1; 3] U II09TOMY UMeeT o6paTHYIO <PYHKIJ;UIO x = 'I/J(y) = Vfj, KOTOPaH TaJOKe MOHOTOHHa Ha OTpe3Ke

[1;9]. OTcIO,n;a x' = 'I/J'(y) = 2~' I'I/J'(y) I= 2~ U, CJIe,n;OBaTeJIbHO,

 

g(y) = {~. 2~'

 

1 ~ y ~9,

 

0,

 

 

y~[1;9].

 

6.13.6.

IhBecTHo, 'ITOIIJIOTHOCTb paclIpe,n;eJIeHUH C. B. X UMeeT BU,n;

 

cosx,

x E (O;~),

 

 

f(x) = {

 

X ~ (O;~).

 

 

0,

 

 

 

Hathu:

 

 

 

 

 

a) IIJIOTHOCTb paclIpe,n;eJIeHUH C. B. Y = X2;

 

 

6) '1UCJIOBbIexapaxTepucTUKU M(Y) U D(Y).

 

6.13.7.

HelIpepbIBHaH C.B. X (0 < x < 00) UMeeT IIJIOTHOCTb paclIpe,n;eJIe-

 

HUH BepOHTHocTei;!: f(x) U <PYHKIJ;UIO paClIpe,n;eJIeHUH BepOHTHocTei;!:

 

F(x). ,LLrrH C. B. Y = InX Hai;!:Tu IIJIOTHOCTb paClIpe,n;eJIeHUH Bepo-

 

HTHocTei;!: g(y) U <PYHKIJ;UIO paclIpe,n;eJIeHUH BepOHTHocTei;!: G(y).

6.13.8.

CJIY'Iai;!:HaHBeJIU'IUHaX UMeeT IIJIOTHOCTb paclIpe,n;eJIeHUH

 

f(x) = {3X2 ,

x E [0; 1],

 

 

0,

 

x ~ [0; 1].

 

 

Hai;!:Tu IIJIOTHOCTb paclIpe,n;eJIeHUH c. B. Y = IX -

21.

6.13.9.

3a.n;aHa IIJIOTHOCTb paclIpe,n;eJIeHUH H. c. B. X:

 

 

fx(x) = {e- x ,

x ~ 0,

 

 

 

0,

 

x < 0.

 

 

Hai;!:Tu Fy(y) U Jy(y), eCJIU Y

= e- x .

 

6.13.10. CJIY'Iai;!:HaHBeJIU'IUHaUMeeT IIJIOTHOCTb paclIpe,n;eJIeHUH

 

X-2

 

x E [2; 4],

 

 

fx(x) = { - 2 - '

 

 

0,

 

 

x ~ [2;4].

 

 

Hai;!:TU:

 

 

 

 

 

a) IIJIOTHOCTb paclIpe,n;eJIeHUH gy(y);

 

 

6) MaTeMaTU'IeCKOeO:>Ku,n;aHue M(Y) U ,n;UCIIepcuIO D(Y) c. B. Y,

 

KOTOPaH IIpe,n;CTaBJIHeT co6oi;!: IIJIO~a.n;b Kpyra pa.n;uyca X.

6.13.11.

CJIY'Iai;!:HaHBeJIU'IUHaX UMeeT IIJIOTHOCTb paclIpe,n;eJIeHUH

 

f(x) = {1' IIpU X E [1; 2],

 

 

0,

IIpU x ~ [1; 2].

 

416

,I:4>yrruI C. B. Y CBH3aHa C X <PYHKIUIOHaJIbHOit 3aBHCHMOCTbIO Y =

=2X3 +1. RaitTH MaTeMaTH'.JeCKoeO)KH,ll;aHHe H ,ll;HCnepCHIO c. B. Y: a) He HaxO,IVI nJIOTHOCTH gy(y);

6) Hait,IVI npe,ll;BapHTeJIbHO nJIOTHOCTb gy (y ).

6.13.12. COBMecTHoe pacnpe,ll;eJIeHHe,ll;. c. B. X H Y 3a,ll;aHO Ta6JIHn;eit

 

X\Y

0

4

9

 

1

0,20

0,15

0,10

 

4

0,30

0,20

0,05

o

OnHcaTb 3aKOH pacnpe,ll;eJIeHHH c. B. Z = X - /Y.

3anHweM 3aKOHbI pacnpe,ll;eJIeHHH COCTaBJIHIOIIJ;HX X H Y:

3aKOH pacnpe,ll;eJIeHHH c. B. /Y HMeeT BH,ll;

CJIyqaitHruI BeJIHqHHa Z = X - /Y npHHHMaeT 3HaqeHHH Zl = 1 - 0 = 1,

Z2 = 1 - 2 = -1, Z3 = 1 - 3 = -2, Z4 = 4 - 0 = 4, Zs = 4 - 2 = 2,

Z6 = 4 - 3 = 1. BepoHTHoCTH 9THX 3HaqeHHit TaKOBbI:

P{Z = I} = P{Z = zd + P{Z = Z6} =

=PiX = 1, JY = O} + PiX = 4, JY = 3} =

= PiX = 1, Y = O} + PiX = 4, Y = 9} = 0,20 + 0,05 = 0,25;

P{Z = -I} = PiX = 1, JY = 2} = PiX = 1, Y =:= 4} = 0,15;

P{Z=-2}=P{X=I, Y=9}=0,1O;

P{Z = 4} = PiX = 4, Y = O} = 0,30;

P{Z=2}=P{X=4, Y=4}=0,20.

TaKHM o6pa30M, 3aKOH pacnpe,ll;eJIeHHH c. B. Z = X - /Y HMeeT BH,ll;

6.13.13. IIcnoJIb3YH YCJIOBHe 3a,n:aqH 6.13.12, onHcaTb 3aKOH pacnpe,ll;eJIeHHH C. B.:

a) Zl = X + Y;

6) Z2 = IX - YI;

B)Z3 = viX2 + y2.

6.13.14.X H Y - He3aBHCHMbIe CJIyqaitHbIe BeJIHqHHbI, pacnpe,ll;eJIeHHbIe

no O,ll;HOMY H TOMY )Ke reOMeTpHqeCKOMY 3aKOHY C napaMeTpOM p = 0,7 (p - BepOHTHOCTb ycnexa B O,ll;HOM HcnbITaHHH). QnHcaTb 3aKOH pacnpe,ll;eJIeHHH c. B. Z = X + Y.

14 C60PHHK 3IIJUI~ no ...eweR MareMOTH". 2 KYPC

417

6.13.15. COBMecTHoe pacIIpe,r:t;eJIeHHe c. B. X H Y 3a.,Il;aHO IIJIOTHOCThlO pac-:

I

IIpe,r:t;eJIeHHfl BepoflTHocTeft

f(x,y) = {X + y,

IIpH X E [0; 1], y E [0; 1],

0,

B "POTHBHOM cJIyqae.

HaftTH:

a) cPYHKII;HIO paCIIpe,r:t;eJIeHHfl BepoflTHocTeft c. B. Z = X + Y;

6) IIJIOTHOCTh paCIIpe,r:t;eJIeHHfl f z (z ).

a a) Fz(z) = Fx+y(z) = P{X+Y < z} = jj(x+y)dxdy, r,r:t;e06JIacThDz

D%

eCTh MHO)KeCTBO TOqeK IIJIOCKOCTH Oxy, Koop,r:t;HHaThI KOTOPhIX y,r:t;OBJIeTBOpfl-

lOT HepaBeHCTBY x+y < z, r,r:t;e z -

"POH3BOJIhHOe qHCJIO (Ha pHC. 9306JIacTh

D z eCTh qaCTh KBa.,Il;paTa (0 ~ X

~ 1, 0 ~ y ~ 1), JIe)Karn,a»

HH)Ke "PflMOft

y = -x + z). IIPH Z

~ 0,

OqeBH,r:t;HO, F(z) = 0

(BHe KBa.,Il;paTa

f(x,y) = 0).

ECJIH 0 < Z ~ 1 (06JIacTh Dz 3aIlITpHXOBaHa Ha pHC. 93), TO

 

2)

 

 

 

z

-x+z

 

z

(

 

 

 

+

F(z)=jj(x+y)dxdy=jdx

j(x+y)dy=jdx

 

xy+~ I~xz=

D%

 

0

0

 

0

 

 

 

 

 

 

~(2

(z -

X)2)

(X3

x2

1

 

(z -

3

X)3) IZ

= JI -x + xz +

2

dx =

-3 + z . 2" - "2 .

 

 

0 =

o

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Z3

Z3

1

3

 

z3

 

Z3

z3

 

 

= --

+ - +

-(z - 0)

 

= -

+ -

= -

 

 

 

3

2

6

 

 

6

 

6

Puc. 93

 

 

 

Puc. 94

ECJIH 1 < z ~ 2 (CM. pHC. 94), TO

 

 

 

F(z) = jj(x+y)dxdy=

z-1

1

1

-x+z

j dx j(x+y)dy+

j

dx j (x+y)dy=

D%

0

0

z-1

0

418

HaKOHeIJ;, eCJUI Z > 2, TO

 

 

 

 

 

 

 

 

 

1

1

 

 

F(z) = / /(X + y) dxdy = / dx

/(X + y) dy = ... = 1.

Dz

 

 

0

0

 

 

TaKHM 06pa30M,

 

 

 

 

 

 

 

0,

 

 

npH z:::;;

0,

 

 

Z3

 

 

npH °< z:::;; 1,

Fz(z)=

-

 

1

3;3

2

 

 

 

 

-"3 + z

 

- 3' npH 1 < z:::;; 2,

 

1,

 

 

npH z > 2.

 

6) HaxO,D,HM fz(z), HCnOJlb3Yjf paBeHCTBO Jz(z) = F~(z):

 

a,

 

npH

z :::;; °

Z

> 2,

 

 

HJlH

 

fz(z) = { z2,

 

npH

°< z:::;; 1,

 

 

-z2 + 2z,

npH 1 < z:::;; 2.

 

 

 

00

 

 

 

 

MO)KHO y6e,D,HTbCjf, 'ITO

/ Jz(z) dz = 1.

 

 

- 00

 

 

 

 

6.13.16. l1cnoJlb3Yjf YCJloBHe 3a,D,a'lH 6.13.15, HaitTH

Z=X-Y.

6.13.17. McnOJlb3Yjf YCJloBHe 3a,D,a'lH 6.13.15, HaitTH

Z=X·Y.

Fz(z)

Fz(z)

H

H

fz(z),

fz(z),

r,D,e

r,D,e

6.13.18. CJlY'laitHbleBeJIH'IHHbIX H Y He3aBHcHMI?I H HMeIOT paBHOMepHoe pacnpe,D,eJleHHe: X '"R[O; 1], Y '" R[-l; 2]. HaitTH nJlOTHOCTb pacnpe,D,eJleHHjf CJlY'laitHOitBeJlH'IHHbIZ = X + Y.

Q Hait,D,eM 3aKOH pacnpe,D,eJleHHjf CYMMbI He3aBHCHMblX c. B. ,D,BYMjf cnoco-

6aMH.

Cnoco6 1. CHa'laJIaHait,D,eM <PYHKIJ;HIO pacnpe,D,eJleHHjf c. B. Z = X + Y.

CHcTeMa ,D,BYX c. B. (X, Y) paBHoMepHo pacnpe,D,eJleHa B npjfMoyroJlbHHKe

ABeD (CM. pHC. 95), n09TOMY

Fz(z) = P{Z < z} = P{X + Y < z} = //f(x, y) dxdy = //h(x)h(Y) dxdy,

Dz Dz

419

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]